DCT-BASED DENOISING of SPEECH SIGNALS

Authors

DOI:

https://doi.org/10.31891/2307-5732-2024-339-4-48

Keywords:

additive noise, DCT-based filtering, performance analysis

Abstract

This paper considers a traditional task of additive white Gaussian noise removal from speech signals. An opportunity to use denoising based on discrete cosine transform is investigated. Both conventional signal-to-noise ratio and PECS metric are used in analysis of filtering efficiency. It is shown that, for the analyzed test signals, it depends on, at least, three factors: input signal-to-noise ratio, type of threshold, and parameter β used in threshold setting. The main observations are the following: 1) improvement of signal-noise ratio due to denoising is the largest for low input SNR; 2) there are optimal values of β that have the tendency to increase if input SNR decreases; 3) the combined threshold that is the first time tested for speech signals performs better than the hard threshold. The directions of further studies are discussed.

 

 

Author Biography

  • VOLODYMYR LUKIN, National Aerospace University – KhAI

    Лукін Володимир Васильович — український радіоінженер, доктор технічних наук (2003), професор кафедри приймання, передавання й обробки сигналів Національного аерокосмічного університету ХАІ імені М. Є. Жуковського.

Downloads

Published

2024-08-30

How to Cite

BRYSIN, P., & LUKIN, V. (2024). DCT-BASED DENOISING of SPEECH SIGNALS. Herald of Khmelnytskyi National University. Technical Sciences, 339(4), 301-309. https://doi.org/10.31891/2307-5732-2024-339-4-48