АЛГОРИТМИ ДЛЯ ПІДВИЩЕННЯ ТОЧНОСТІ НЕЙРОМЕРЕЖЕВОЇ КЛАСИФІКАЦІЇ ПОБУТОВОГО СМІТТЯ З ВИКОРИСТАННЯМ ХМАРНИХ КЕРОВАНИХ ОБЧИСЛЮВАЛЬНИХ ВУЗЛІВ

Автор(и)

DOI:

https://doi.org/10.31891/2307-5732-2026-361-33

Ключові слова:

побутове сміття, нейромережева класифікація, хмарні керовані обчислювальні вузли

Анотація

Актуальність роботи зумовлена зростанням потоків побутових відходів і потребою у точному розпізнаванні матеріальних категорій у реалістичних сценах з нерівномірним освітленням, фоновими завадами та дисбалансом класів. Практична ефективність таких систем визначається не лише вибором архітектури, а насамперед керованою якістю даних і відтворюваністю експериментів у стандартизованому середовищі. У статті запропоновано якісно орієнтований конвеєр, у якому модуль контролю якості інтегровано безпосередньо в цикл навчання. Фільтрація за різкістю, контрастом, експозиційною збалансованістю та фоновою засміченістю формує очищену підвибірку для подальшого донавчання попередньо натренованої моделі. Використано керовані хмарні обчислювальні вузли на базі сеансів Google Colab з доступом до графічних прискорювачів, фіксованими версіями бібліотек і журналюванням артефактів, що забезпечує сталість програмного оточення та порівнюваність серій.

Методологія спирається на архітектуру MobileNetV3 Small з перенесенням ознак ImageNet та заміною класифікаційної голови на тридцятикласову постановку задачі. Для експериментів використано набір Recyclable and Household Waste Classification Dataset з тридцятьма категоріями, включно з паперовими, пластиковими, скляними та металевими підкласами, а також органічними фракціями. Базове оцінювання на сирій вибірці дало узгоджені результати за сукупністю метрик з точністю 0.7703 і високими площами під ROC кривими, що засвідчує добру роздільність імовірнісних виходів і наявність резерву для стабілізації рішень у багатокласовому режимі. Включення фільтрації в цикл навчання забезпечило предметні покращення у класах, схильних до перехресних помилок унаслідок блиску та слабкої фактури. Для paper_cups зафіксовано зростання точності на 13.13 відсотка, повноти на 10.69 відсотка, інтегрально F1 на 11.85 відсотка. Позитивні зрушення отримано також для steel_food_cans, clothing і magazines, де зменшено плутанину із візуально подібними категоріями.

Отримані результати підтверджують доцільність перенесення акценту з ускладнення архітектур на керовану якість даних і дисципліну експерименту у хмарному середовищі. Запропонована інтеграція підвищує стійкість класифікації та створює підґрунтя для надійного впровадження комп’ютерного зору в інфраструктуру перероблення і підтримує практики циркулярної економіки.

Завантаження

Опубліковано

29.01.2026

Як цитувати

МОЛЧАНОВА, М., СОБКО, О., МАЗУРЕЦЬ, О. ., & ДЕРЖАК, В. (2026). АЛГОРИТМИ ДЛЯ ПІДВИЩЕННЯ ТОЧНОСТІ НЕЙРОМЕРЕЖЕВОЇ КЛАСИФІКАЦІЇ ПОБУТОВОГО СМІТТЯ З ВИКОРИСТАННЯМ ХМАРНИХ КЕРОВАНИХ ОБЧИСЛЮВАЛЬНИХ ВУЗЛІВ. Herald of Khmelnytskyi National University. Technical Sciences, 361(1), 239-245. https://doi.org/10.31891/2307-5732-2026-361-33