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USE OF SIMILARITY METRICS IN ROBUST TIME DELAY ESTIMATION 
 
This paper addresses the task of time delay and direction of arrival estimation for a source of the wideband signal 

using two sensors with fixed displacement. The peculiarity of the task statement is that a limited time of signal observation is 
supposed and additive noise is assumed non-Gaussian with a heavy-tail distribution. This leads to a high probability of 
abnormal estimates for the conventional signal processing method based on cross-correlation. To decrease this probability, it 
is proposed to reformulate the task of cross-correlation processing to the task of similarity estimation between two data 
arrays. This allows using different similarity metrics, particularly those that have less sensitivity to outliers in data (impulse 
noise), and, thus, provide better robustness for non-Gaussian environments typical for several applications of time delay 
estimation. More than ten different similarity metrics are considered for the model of the symmetric α-stable distribution 
describing noise properties. It is shown that some metrics including cosine distance, Hellinger, and some others are able to 
provide sufficiently better accuracy of time delay estimation both in the sense of less RMSE of normal estimates and 
probability of abnormal estimates for typical values of α and a wide range of γ values for symmetric α-stable distribution.  

Кеу words: time delay estimation, similarity metrics, robustness. 

 
ОЛІЙНИК ВЯЧЕСЛАВ, ЛУКІН ВОЛОДИМИР 

Національний аерокосмічний університет ім. М.Є. Жуковського «Харківський авіаційний інститут» 

 

ВИКОРИСТАННЯ МЕТРИК ПОДІБНОСТІ ПРИ СТІЙКОМУ ОЦІНЮВАННІ ЗАТРИМКИ ЧАСУ 
 

У цій статті розглядається задача визначення часу затримки та напрямку приходу випромінювання від джерела 
широкосмугового сигналу за допомогою двох датчиків із фіксованою відстанню між ними. Особливістю постановки завдання є 
те, що вводяться припущення про обмеженого часу спостереження сигналу, а адитивний шум припускається негаусовим та 
таким, що має розподілом із важким хвостом. Це призводить до високої ймовірності аномальних оцінок для традиційного 
методу обробки сигналу на основі взаємної кореляції. Щоб зменшити цю ймовірність, пропонується переформулювати задачу 
взаємно-кореляційної обробки як задачу оцінки подібності між двома масивами даних. Це дозволяє використовувати різні 
метрики подібності, зокрема, ті, які мають меншу чутливість до викидів у даних (імпульсного шуму) і, таким чином, 
забезпечують кращу стійкість для негаусових середовищ, які є типовими для кількох застосувань оцінки часової затримки. Для 
моделі симетричного α-стабільного розподілу, що описує властивості шуму, розглянуто більше десяти різних метрик 
подібності. Показано, що деякі метрики, включаючи косинусну відстань, відстань Хеллінгера та деякі інші, здатні забезпечити 
суттєво кращу точність оцінки часової затримки як у сенсі меншого середнього квадратичного значення нормальних оцінок, 
так і ймовірності аномальних оцінок для типових значень α та широкого діапазону значень γ для симетричного α-стабільного 
розподілу. 

Ключові слова: оцінка часової затримки, метрики подібності, стійкість.  

 

Problem statement 

The task of time delay estimation (TDE) or determination of the direction of arrival (DOA) based on TDE 

arises in many applications including teleconferencing [1, 2], seismology [3], hydroacoustics (passive sonars) [4], 

and others [5, 6]. For a simple (idealized) case of stationary wideband signal with the known spectrum, high signal-

to-noise ratio (SNR), Gaussian additive noise with the known spectrum, fixed (not varying) time delay, and quite 

large observation time, the solution is known [1, 4]. It is based on cross-correlation processing of received signals 

with possible pre-whitening in time or spectral domain if additive noise is not white. The time delay is estimated by 

finding the largest (global) maximum of the cross-correlation function or its modification and then recalculated to 

DOA taking into account antenna geometry. However, the situation changes if one or several aforementioned 

assumptions are violated, i.e. if the signal source moves, SNR is small, and/or the noise is not Gaussian. Note that, 

for each particular application, there are different reasons to violate these assumptions. For example, additive noise 

is often non-Gaussian [7, 8], and/or a signal source is not stationary (its position changes in time) as this happens in 

teleconferencing and hydroacoustics. This leads to an increase in the variance of normal estimates of TDE and DOA 

as well as to a higher probability of abnormal estimates [9, 10]. This shows that it is desired to provide robustness of 

TDE in two senses [11], i.e. robustness with respect to the impulsivity of the noise and to limited a priori knowledge 

on statistics of the noise (parameters α and γ of the symmetric α-stable process simulating non-Gaussian noise).  

 

Analysis of recent research 

There are several ways to improve the performance of TDE and, in general, tracking a source of wideband 

signals. Shao and Nikias [12] proposed data processing based on fractional lower-order moments. Benesty et al [2] 

used minimum entropy to improve estimation. H. Li et al [13] concentrated on the estimation of the time delay 

derivative in a complex noise environment. Mehrjouyan and Alfi [14] applied an adaptive robust Kalman filter for 
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tracking. A joint analysis of these publications shows that the robustness of estimation is tried to be improved at 

stages of primary signal processing [2, 12] and secondary processing of already obtained estimates [14, 15] or a set 

of sequentially obtained estimates of cross-correlation outputs [16]. In general, the performance improves due to 

better accuracy of elementary estimates obtained at the first stage (i.e. for short-time intervals of signal accumulation 

and processing) and more efficient (robust) post-processing of the already obtained time delay estimates or cross-

correlator outputs. Then, it is reasonable to solve both subtasks. Recently, we have concentrated on improving the 

accuracy of TDE for elementary intervals looking for more efficient processing of signals embedded in non-

Gaussian noise by partially or fully replacing the cross-correlation [17-19]. An approach based on robust DFT [20] 

was proposed in [17] but, unfortunately, the robust DFT has no fast algorithms and, thus, the computational 

efficiency of the corresponding processing is limited. Another approach [18] presumes the use of a center-weighted 

median filter [21] to remove impulses in received signals, but it is unclear what are the best parameters of such a 

filter depending on signal and noise properties. Finally, the authors of the paper [19] propose to apply similarity 

measures (metrics) instead of cross-correlation-based processing assuming that robust similarity measures or 

distances are able to provide desired properties to the entire processing. However, the amount of the similarity 

measures considered in [19] is very limited, and the final recommendations concerning the best among them are not 

given.  

Thus, the Goal of this paper is the following: to investigate the possibility of using a wide set of 

similarity measures in time delay estimation for different possible practical conditions and to provide motivated 

recommendations on the best (most robust) similarity measures.  

Analysis of possible solutions using different similarity measures  

We assume that two sensors displaced by an a priori known distance L receive the mixtures of information 

wideband noise-like (WNL) signal and additive noise:  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 0 2, x t s t t x t s t t  = + = − +              (1) 

where ( )s t , t = [Tb; Te] denotes the WNL information signal which is irradiated by a signal source); 

ξ1(t) and ξ2(t) denote the additive noise realizations for the corresponding sensors, 0  is the true value of the time 

delay. There are the following assumptions on WNL signal: its mean is equal to zero and its spectrum is more “low-

frequency” than the additive noise spectrum. For additive noise, we assume the following: the means (or location 

parameters) of the processes ξ1(t) and ξ2(t) are assumed equal to zeroes, they are characterized by probability density 

function that differs from Gaussian and it is more heavy-tailed although there is no absolutely accurate information 

about noise intensity and impulsivity. The latter assumption follows from practice where it is difficult to estimate 

statistical characteristics of the noise (especially, from its mixture with information signal) and, moreover, the noise 

statistics might vary in time. We denote the observation interval starting and ending time instances as Tb and Te. It is 

also assumed that the maximal possible value of τ0 determined by L and the wave propagation speed in a given 

medium C as /max L C =  is considerably smaller than Te − Tb. Meanwhile, Te − Tb is also restricted 

from the upper side by the source motion, the computational efficiency of processing, and the necessity to get 

elementary estimates frequently enough. Because of this, Te − Tb is usually larger than τmax by tens of times.  

The conventional way of TDE presumes the calculation of the cross-correlation function:  
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where T= Te − Tb with the further search of the global maximum coordinate in the limits from max−  to 

max . This coordinate is accepted as the time delay estimate. Let us now rewrite the expression (2) as 
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the energies of the mixture  

1( )x t  and 2 ( )x t  [19]. Suppose that 1E  and 
2E  are practically constant if WNL signal and 

additive noises are locally stationary. Then, it becomes clear that instead of searching for the global maximum of 

expression (2), one can search for the global minimum of (3) which is, in fact, the Euclidian distance between the 
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received signals 1( )x t  and 2 ( )x t + . For sampled versions of these signals 

( )1 , 1,  , x i i N=   and ( )2 , 1,  , x i j i N+ =  , it is then possible to 

compute the similarity measure ( ) max max, ,   ,  S j i j j= −  , where 

maxΔ  Δ /maxj t L C= =  and ∆t is the sampling rate.  

 The next step deals with the fact that Euclidian distance is not robust with respect to impulse noise. Then, 

some other similarity measures can be applied instead of it. In particular, it has been proposed in [19] to form the 

output as ( ) ( ) ( )1 2S j x i x i j


 = − +  where β denotes the order. Three 

values of β equal, namely, to 0.5 1.0, and 1.5 have been considered in [19] and it has been demonstrated that, 

depending on the additive noise impulsivity, all of these three values could be quasi-optimal in the sense of 

providing the best robustness. If so, other similarity measures that possess certain robust features can be potentially 

applied as well.  

 In our studies, we have used several similarity measures and distances [22]. One of them is Minkowski’s 

distance expressed as  

1

 
n

p
p

M i i p i i

i

d x y x y
=

= − = − ,    (4) 

 

where x and y are general notations for two vectors that can represent two (mutually shifted) signals 

received by two sensors for the task of our research, i is the vector element index, and p denotes the order. As is 

seen, in [19], we have used not directly the Minkowski distance but its analog. Also note that the Minkowski metrics 

with p=1 and p=2 are called Manhattan and Euclidian distances, respectively.  

The Canberra metric [22] was originally used in solving cluster analysis problems, which involve assessing 

the similarity of data for grouping and building a hierarchy relative to the original data. This metric is written as   

 

( )
1

  /  
n

C i i i i

i

d x y x y
=

= − +      (5) 

 

A metric based on the Bray-Curtis (also called Sorensen) distance [22] has been mainly used for the 

assessment of the similarity of samples in botany. It is expressed as 

 

1 1

  /  
n n

BC i i i i

i i

d x y x y
= =

= − +      (6) 

 

The Hellinger distance (see the expression below) as a modification of the Euclidian distance is intensively 

used in probability theory, cluster, and statistical analysis:  
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= −      (7) 

 

Instead of searching the maximum of the cross-correlation function like in the conventional method, we 

need to search for the global minimum of sampled functions (outputs) SMp(j), SC(j), SBC(j), and SH(j) that are based 

on Minkowski metric with a given p, Canberra, Bray-Curtis, and Hellinger distances, respectively.  

Let us give some examples to better explain the aforesaid. First, Figure 1 shows two examples of absolute 

values of the cross correlation function Y(τ) in case of using the standard approach. There is the situation of 

obtaining a normal estimate (τ0 = 0.01 s) for a very high signal-to-noise ratio (Fig. 1a). In turn, the situation of 

abnormal estimation is presented in Fig. 1b. In this case, τ0 is the same, but, due to heavy noise, the global maximum 

is observed for τ about – 0.007 s and the standard method fails.  

Outputs for the considered distances differ from Y(τj) =Y(j), j=-jmax, …, jmax as well as between each other. 

To demonstrate this, Figure 2 presents the array SC(j), j=-jmax, …, jmax, where jmax = 100 for the considered case. First 

of all, in this case, one needs to find the global minimum. The case of obtaining a normal estimate is depicted in Fig. 

2,a where, in this case, τ0 = 0 s and this corresponds to j = 0. As one can see, output values are of the order of 

hundreds and the minimal value for j = 0 is only slightly smaller than for other j. For more intensive non-Gaussian 

noise (see the details of the used noise model in the next section), the obtained estimate is abnormal – it is observed 

for j = 25, SNR is about -15 dB. The values of SC(j) due to more intensive noised (larger γ) have increased and they 

are all about 1006.  
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a                                                                          b  

Figure 1. Output CCFs Y(τ) using the standard approach for the situations of normal (a) and abnornal (b) estimation of time 

delay 

 

 

 
a                                                                                  b  

Figure 2. Output for the Canberra distance SC(j): normal (a) and abnormal (b) estimation cases 

Signal/Noise Model 

 

The following similarity metrics are investigated in our study: Minkowski distance with p = 1.5, 1.0. and 

0.5, Canberra, Bray-Curtis, and Hellinger distances. Simulations have been conducted to compare their effectiveness 

using a broadband noise-like signal. To model it, additive white Gaussian noise was passed through a low-pass filter 

to provide the upper (cut-off) frequency approximately three times lower than the Nyquist frequency (20 kHz in our 

case). The power (variance) was fixed and equal to one. To simulate additive noise independent for the receivers, a 

model of a symmetric alpha-stable (SαS) process [8] was chosen. This allows for the flexible variation of the noise 

intensity and distribution tail heaviness using two parameters: αSαS adjusts the distribution tail heaviness (smaller 

αSαS relates to heavier tails), and γ is the scale parameter responsible for the noise intensity (larger γ corresponds to 

more intensive noise). This makes it possible to vary the equivalent signal-to-noise ratio.  

Statistical modelling was carried out using MATLAB in the following manner. 10,000 realizations of the 

noisy signal and noises ξ1(t) and ξ2(t) were generated for each considered pair of αSαS and γ in the first and second 

channels. Standard methods were used to obtain the output arrays for the standard approach denoted as Fourier 

approach in the plots below and new approaches based on the considered similarity metrics (distances). The root 

mean square error στ(γ) of normal estimates and the probability of abnormal estimates Pabn(γ) were determined for 

each of the considered methods. For both, the smaller the better. It should be noted that the latter criterion holds 

more significance.  

 

Result Analysis 

Simulation results were obtained for four αSαS values, namely 2, 1.8, 1.6, and 1.4, where αSαS = 2 

corresponds to Gaussian noise.  

The obtained plots Pabn(γ) are presented in Fig. 3 for the proposed approach based on the Minkowski 

distance (recall that a larger γ corresponds to more intensive noise, to a smaller equivalent SNR, and to a larger 

probability of abnormal errors observed for all plots in Figures 3 and 4). For αSαS = 2 (Fig. 3a), the proposed 

approach performs slightly better than the conventional one (based on cross-correlation processing) for large values 

of γ. If αSαS = 1.8 (Fig. 3b), the advantages of using the proposed approach become obvious. The use of the 
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Minkowski distance with p=1.0 provides, on average, slightly better results than for other p values. For smaller αSαS 

values (Figures 3c and 3d), the conventional method fails for γ = 1.0. The proposed approach possesses certain 

robustness to the heavy-tailed noise even for γ = 2. The results for all values of p are approximately the same, so we 

can recommend using p = 1.  

Let us analyze now the simulation data for three other distances. The results are presented in Fig. 4 for four 

values of αSαS. 

As one can see, the distances utilized in classification and cluster analysis are able to yield favourable 

outcomes. The standard approach based on cross-correlation processing yielded quite good results under ideal 

conditions (αSαS = 2, Fig. 4a). However, Hellinger and Bray-Curtis outperformed it. The use of processing based on 

the Canberra metric is not suitable for these conditions.  

As noise impulsivity increases (see data for αSαS = 1.8, Fig. 4b), the conventional approach clearly becomes 

the worst (Pabn(γ) values occur to be the largest for a wide range of γ variation). The data processing method based 

on Canberra distance is less efficient than for two other considered distances. The methods based on Hellinger and 

Bray-Curtis distances perform in a similar manner. For more impulsive additive noise (see data for αSαS = 1.6 and 

1.4, Figures 4c and 4d, respectively), the conventional method fails even for γ = 1. Meanwhile, it is possible to state 

that the data processing method that relies on the Bray-Curtis metric performs in the best manner. 

In practice, different situations are possible. First, one might know noise impulsivity (associated with αSαS 

for the SαS noise model) in advance. Then, the obtained results presented in Figures 3 and 4 allow for choosing the 

most appropriate similarity metric (distance). If αSαS is a priori known and it is difficult to measure it, a “robust” 

approach can be applied. In this sense, we recommend using either the Minkowski distance with the parameter p 

equal to unity or the Bray-Curtis distance. In the future, it seems possible to design some adaptive approach 

presuming estimation of non-Gaussian noise parameters and proper selection of distance.  

 

 
a       b 

 

 
c                                                                                          d 

Figure 3. Comparison of performance for the conventional approach and the proposed approach based on Minkowski distance 
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a         b 

 

 
c                                                                             d  

Figure 4. Comparison of performance for the conventional approach and the proposed approach based on Canberra, Bray-Curtis, 

and Hellinger distances 

 

Conclusions 

This article focuses on the application of similarity metrics in time delay estimation as an alternative to 

conventional cross-correlation processing, which serves as a reliable technique for TDE for WNL signals in 

favourable conditions of low-intensity Gaussian noise. It is shown that non-Gaussianty of the noise leads to a high 

probability of abnormal estimates of time delay. The proposed method relies on using robust similarity metrics as 

the basis of processing. Employing a robust distance metric as a CCF analogue provides rather fast and efficient 

processing for non-Gaussian environment. Simulation data giving some insight for choosing the most suitable 

metric based on noise parameters are presented. Through simulation results, it is evident that the proposed approach 

demonstrates a significant improvement compared to the conventional method. As a result, future research will aim 

to develop an adaptive metric that can be applied in practical situations. 
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