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USE OF SIMILARITY METRICS IN ROBUST TIME DELAY ESTIMATION

This paper addresses the task of time delay and direction of arrival estimation for a source of the wideband signal
using two sensors with fixed displacement. The peculiarity of the task statement is that a limited time of signal observation is
supposed and additive noise is assumed non-Gaussian with a heavy-tail distribution. This leads to a high probability of
abnormal estimates for the conventional signal processing method based on cross-correlation. To decrease this probability, it
is proposed to reformulate the task of cross-correlation processing to the task of similarity estimation between two data
arrays. This allows using different similarity metrics, particularly those that have less sensitivity to outliers in data (impulse
noise), and, thus, provide better robustness for non-Gaussian environments typical for several applications of time delay
estimation. More than ten different similarity metrics are considered for the model of the symmetric a-stable distribution
describing noise properties. It is shown that some metrics including cosine distance, Hellinger, and some others are able to
provide sufficiently better accuracy of time delay estimation both in the sense of less RMSE of normal estimates and
probability of abnormal estimates for typical values of @ and a wide range of y values for symmetric a-stable distribution.
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OJIIHKMK BAYECJIAB, JIVKIH BOJIOIUMUP

HamionansHnii aepokocMivunui yHiBepcuteT iM. M.€. XKykoBcbkoro «XapKiBCbKUI aBiallifHUI IHCTHTY T
BUKOPUCTAHHS METPUK NOAIBHOCTI ITPU CTIMKOMY OLIHIOBAHHI 3ATPUMKHA YACY

Y yiti cmammi posaasidaemues 3a0ava 8usHAYeHHs 4AcCy 3aMPUMKU MaA HANPAMKY npuxody eunpoMiHIO8aHHs 8id dicepena
WUPOKOCMY208020 CUzHAy 3a donomozoi 08ox damuukie i3 gikcoeanorw eidcmarHo Mixe HumMu. 0cob.au8icmMI0 NOCMAHOBKU 3A80AHHS €
me, o 8600AMbCS NPUNYUWEHHSI NPO 0OMENHCEHO20 4acy CNOCMepeXCeHHs! CU2HALY, d AJUMUBHUU WYM Npunyckaemocs He2qycosuMm ma
makuM, Wo Mae po3nodinom i3 eaxckum xeocmomM. Lle npuzsodums do eucokoi tiMosipHOCMi AHOMA/ABLHUX OYIHOK 0151 mpaduyiiiHozo
Memody 06po6KU cuzHAy HA OcHO8I 83aemHoi kopeasyii. 1Jo6 smeHwumu yio limogipHicms, nponoHyembucs nepedopmyarosamu 3a0aqy
830EMHO-KOpeAsyIliHoi 06pobku sik 3adavy oyiHku nodibHocmi mixc deoma macueamu daHux. lle doseossie sukopucmogysamu pisHi
MempuKku nodi6Hocmi, 30kpema, mi, ki maiomes MeHuly yymaugicms 00 8UKudie y 0aHux (iMnyabCHO20 WyMmy) i, makum YUHOM,
3a6e3neyyroms Kpawy cmilikicms 0415 Hezaycosux cepedosuly, siki € munoguMu 015 KiibkoX 3acmocys8aHb OYiHKU Yacoeoi sampumku. Jas
Modesi cumempu4Ho20 a-cmabinbHo20 po3nodiny, Wo Onucye saacmueocmi Wymy, po32/siHymo 6inbue decsamu pi3HUX Mempuk
nodiéHocmi. [lokasaHo, wjo desiki MempuKu, 8KAUAIOYU KOCUHYCHY 8idcmaHb, idcmaHb XeaniHeepa ma desiki iHwi, 30amHi 3a6e3neyumu
cymmeeo kpaujy movHicms OYiHKU 4acosoi 3ampuMKu K Y CEeHCI MeHUul020 cepedHb020 K8aopamuyHo20 3HaQ4eHHs1 HOPMAAbHUX OYIHOK,
mak I iiMogipHOCMi AHOMANLHUX OYIHOK 0151 MUNOBUX 3HAYEHb @ MA WUPOKO20 Jiana3oHy 3HA4eHb Y 0151 CUMEMPUYHO20 A-CMabibHO20
po3nodiny.

Karouoei caoea: oyiHka 4acosoi sampumku, Mempuku nodi6Hocmi, cmilikicmo.

Problem statement

The task of time delay estimation (TDE) or determination of the direction of arrival (DOA) based on TDE
arises in many applications including teleconferencing [1, 2], seismology [3], hydroacoustics (passive sonars) [4],
and others [5, 6]. For a simple (idealized) case of stationary wideband signal with the known spectrum, high signal-
to-noise ratio (SNR), Gaussian additive noise with the known spectrum, fixed (not varying) time delay, and quite
large observation time, the solution is known [1, 4]. It is based on cross-correlation processing of received signals
with possible pre-whitening in time or spectral domain if additive noise is not white. The time delay is estimated by
finding the largest (global) maximum of the cross-correlation function or its modification and then recalculated to
DOA taking into account antenna geometry. However, the situation changes if one or several aforementioned
assumptions are violated, i.e. if the signal source moves, SNR is small, and/or the noise is not Gaussian. Note that,
for each particular application, there are different reasons to violate these assumptions. For example, additive noise
is often non-Gaussian [7, 8], and/or a signal source is not stationary (its position changes in time) as this happens in
teleconferencing and hydroacoustics. This leads to an increase in the variance of normal estimates of TDE and DOA
as well as to a higher probability of abnormal estimates [9, 10]. This shows that it is desired to provide robustness of
TDE in two senses [11], i.e. robustness with respect to the impulsivity of the noise and to limited a priori knowledge
on statistics of the noise (parameters a and y of the symmetric a-stable process simulating non-Gaussian noise).

Analysis of recent research
There are several ways to improve the performance of TDE and, in general, tracking a source of wideband
signals. Shao and Nikias [12] proposed data processing based on fractional lower-order moments. Benesty et al [2]
used minimum entropy to improve estimation. H. Li et al [13] concentrated on the estimation of the time delay
derivative in a complex noise environment. Mehrjouyan and Alfi [14] applied an adaptive robust Kalman filter for
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tracking. A joint analysis of these publications shows that the robustness of estimation is tried to be improved at
stages of primary signal processing [2, 12] and secondary processing of already obtained estimates [14, 15] or a set
of sequentially obtained estimates of cross-correlation outputs [16]. In general, the performance improves due to
better accuracy of elementary estimates obtained at the first stage (i.e. for short-time intervals of signal accumulation
and processing) and more efficient (robust) post-processing of the already obtained time delay estimates or cross-
correlator outputs. Then, it is reasonable to solve both subtasks. Recently, we have concentrated on improving the
accuracy of TDE for elementary intervals looking for more efficient processing of signals embedded in non-
Gaussian noise by partially or fully replacing the cross-correlation [17-19]. An approach based on robust DFT [20]
was proposed in [17] but, unfortunately, the robust DFT has no fast algorithms and, thus, the computational
efficiency of the corresponding processing is limited. Another approach [18] presumes the use of a center-weighted
median filter [21] to remove impulses in received signals, but it is unclear what are the best parameters of such a
filter depending on signal and noise properties. Finally, the authors of the paper [19] propose to apply similarity
measures (metrics) instead of cross-correlation-based processing assuming that robust similarity measures or
distances are able to provide desired properties to the entire processing. However, the amount of the similarity
measures considered in [19] is very limited, and the final recommendations concerning the best among them are not
given.

Thus, the Goal of this paper is the following: to investigate the possibility of using a wide set of
similarity measures in time delay estimation for different possible practical conditions and to provide motivated
recommendations on the best (most robust) similarity measures.

Analysis of possible solutions using different similarity measures

We assume that two sensors displaced by an a priori known distance L receive the mixtures of information

wideband noise-like (WNL) signal and additive noise:

x(t)=s5()+& (1), (t)=5(t—7,) +& (1) 22 (0) = s(O) + &1(8), x,(8) = s(t —70) + (1) (1)

where § (t) s(t), t = [Ty; T.] denotes the WNL information signal which is irradiated by a signal source);

&i(¢) and &(¢) denote the additive noise realizations for the corresponding sensors, 7, Tj is the true value of the time

delay. There are the following assumptions on WNL signal: its mean is equal to zero and its spectrum is more “low-
frequency” than the additive noise spectrum. For additive noise, we assume the following: the means (or location
parameters) of the processes &;(f) and &(¢) are assumed equal to zeroes, they are characterized by probability density
function that differs from Gaussian and it is more heavy-tailed although there is no absolutely accurate information
about noise intensity and impulsivity. The latter assumption follows from practice where it is difficult to estimate
statistical characteristics of the noise (especially, from its mixture with information signal) and, moreover, the noise
statistics might vary in time. We denote the observation interval starting and ending time instances as 7 and 7. It is
also assumed that the maximal possible value of 7y determined by L and the wave propagation speed in a given

medium Cas 7, = L/ C Tpar = L/C is considerably smaller than 7, — T. Meanwhile, T, — T} is also restricted

from the upper side by the source motion, the computational efficiency of processing, and the necessity to get
elementary estimates frequently enough. Because of this, 7. — T} is usually larger than 7, by tens of times.
The conventional way of TDE presumes the calculation of the cross-correlation function:

Y(7)= I x, (1) x,(t+7)dt )

-T/2

where 7= T. — T, with the further search of the global maximum coordinate in the limits from —7,  —Tpqx to

T ,.0r Tmax- This coordinate is accepted as the time delay estimate. Let us now rewrite the expression (2) as

T/2

E+E,=2Y(z)= [ (x(f)=2xx, (t+7)+x(t+7))dt 3)
-T2
T/2 /2
where E| = I ( )dt E,= [ mxlz (t) dtand E, = I X, (Z+T)dt E,= [ mxzz[t+ 7) dt are, in fact,
-T2 )
the energies of the mixture

x,(£)xy(t) and x,(#) x(t) [19]. Suppose that E,E; and E,E, are practically constant if WNL signal and

additive noises are locally stationary. Then, it becomes clear that instead of searching for the global maximum of
expression (2), one can search for the global minimum of (3) which is, in fact, the Euclidian distance between the
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received signals X, (#)x;(t) and x,(t+7)x;(t+ 7). For sampled versions of these signals
X, (i),i=1,...,le(i),i=1, «..N and Xz(i+j),i=1,...,Nx2(i+j),i=1,...,N, it is then possible to
compute the similarity measure S ( J ) A== s Joo SGLT = —jmags s Fmares where

Jox At =AT =L/ C gt = ATpq, = L/C and At is the sampling rate.

The next step deals with the fact that Euclidian distance is not robust with respect to impulse noise. Then,
some other similarity measures can be applied instead of it. In particular, it has been proposed in [19] to form the

output as Sﬁ (]) = Z‘xl (i)—x2 (i+j)‘ﬂ.5'ﬁ[f) = Z|x,({) —x,(i +j) | where B denotes the order. Three

values of £ equal, namely, to 0.5 1.0, and 1.5 have been considered in [19] and it has been demonstrated that,
depending on the additive noise impulsivity, all of these three values could be quasi-optimal in the sense of
providing the best robustness. If so, other similarity measures that possess certain robust features can be potentially
applied as well.
In our studies, we have used several similarity measures and distances [22]. One of them is Minkowski’s
distance expressed as
n
dM:xl.—yl.p:pZ|xl.—yl.|p , 4)

i=l1

where x and y are general notations for two vectors that can represent two (mutually shifted) signals
received by two sensors for the task of our research, 7 is the vector element index, and p denotes the order. As is
seen, in [19], we have used not directly the Minkowski distance but its analog. Also note that the Minkowski metrics
with p=1 and p=2 are called Manhattan and Euclidian distances, respectively.

The Canberra metric [22] was originally used in solving cluster analysis problems, which involve assessing
the similarity of data for grouping and building a hierarchy relative to the original data. This metric is written as

n

d. =Z|xi_yi|/(|xi|+|yi|) %)

i=1

A metric based on the Bray-Curtis (also called Sorensen) distance [22] has been mainly used for the
assessment of the similarity of samples in botany. It is expressed as

dye =D |5 =,/ D%+ (©6)
i=1 i=1

The Hellinger distance (see the expression below) as a modification of the Euclidian distance is intensively
used in probability theory, cluster, and statistical analysis:

-5 -1

Instead of searching the maximum of the cross-correlation function like in the conventional method, we
need to search for the global minimum of sampled functions (outputs) Si(j), Sc(f), Ssc(j), and Su(j) that are based
on Minkowski metric with a given p, Canberra, Bray-Curtis, and Hellinger distances, respectively.

Let us give some examples to better explain the aforesaid. First, Figure 1 shows two examples of absolute
values of the cross correlation function Y(7) in case of using the standard approach. There is the situation of
obtaining a normal estimate (7o = 0.01 s) for a very high signal-to-noise ratio (Fig. 1a). In turn, the situation of
abnormal estimation is presented in Fig. 1b. In this case, 7y is the same, but, due to heavy noise, the global maximum
is observed for 7 about — 0.007 s and the standard method fails.

Outputs for the considered distances differ from Y(z) =Y(j), j=-jmax, .., jmax as Well as between each other.
To demonstrate this, Figure 2 presents the array Sc(j), j=-jmax, ---» Jmax, Where jma = 100 for the considered case. First
of all, in this case, one needs to find the global minimum. The case of obtaining a normal estimate is depicted in Fig.
2,a where, in this case, 7o = 0 s and this corresponds to j = 0. As one can see, output values are of the order of
hundreds and the minimal value for j = 0 is only slightly smaller than for other j. For more intensive non-Gaussian
noise (see the details of the used noise model in the next section), the obtained estimate is abnormal — it is observed
for j = 25, SNR is about -15 dB. The values of Sc(j) due to more intensive noised (larger y) have increased and they
are all about 1006.
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Figure 1. Output CCFs Y(7) using the standard approach for the situations of normal (a) and abnornal (b) estimation of time
delay
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Figure 2. Output for the Canberra distance Sc(j): normal (a) and abnormal (b) estimation cases
Signal/Noise Model

The following similarity metrics are investigated in our study: Minkowski distance with p = 1.5, 1.0. and
0.5, Canberra, Bray-Curtis, and Hellinger distances. Simulations have been conducted to compare their effectiveness
using a broadband noise-like signal. To model it, additive white Gaussian noise was passed through a low-pass filter
to provide the upper (cut-off) frequency approximately three times lower than the Nyquist frequency (20 kHz in our
case). The power (variance) was fixed and equal to one. To simulate additive noise independent for the receivers, a
model of a symmetric alpha-stable (SaS) process [8] was chosen. This allows for the flexible variation of the noise
intensity and distribution tail heaviness using two parameters: as,s adjusts the distribution tail heaviness (smaller
ases relates to heavier tails), and y is the scale parameter responsible for the noise intensity (larger y corresponds to
more intensive noise). This makes it possible to vary the equivalent signal-to-noise ratio.

Statistical modelling was carried out using MATLAB in the following manner. 10,000 realizations of the
noisy signal and noises &;(?) and &>(2) were generated for each considered pair of as.s and y in the first and second
channels. Standard methods were used to obtain the output arrays for the standard approach denoted as Fourier
approach in the plots below and new approaches based on the considered similarity metrics (distances). The root
mean square error o;(y) of normal estimates and the probability of abnormal estimates P, (y) were determined for
each of the considered methods. For both, the smaller the better. It should be noted that the latter criterion holds
more significance.

Result Analysis

Simulation results were obtained for four as«s values, namely 2, 1.8, 1.6, and 1.4, where ases = 2
corresponds to Gaussian noise.

The obtained plots Pus(y) are presented in Fig. 3 for the proposed approach based on the Minkowski
distance (recall that a larger y corresponds to more intensive noise, to a smaller equivalent SNR, and to a larger
probability of abnormal errors observed for all plots in Figures 3 and 4). For as.s = 2 (Fig. 3a), the proposed
approach performs slightly better than the conventional one (based on cross-correlation processing) for large values
of y. If ases = 1.8 (Fig. 3b), the advantages of using the proposed approach become obvious. The use of the
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Minkowski distance with p=1.0 provides, on average, slightly better results than for other p values. For smaller os,s
values (Figures 3c and 3d), the conventional method fails for y = 1.0. The proposed approach possesses certain
robustness to the heavy-tailed noise even for y = 2. The results for all values of p are approximately the same, so we
can recommend using p = 1.

Let us analyze now the simulation data for three other distances. The results are presented in Fig. 4 for four
values of asus.

As one can see, the distances utilized in classification and cluster analysis are able to yield favourable
outcomes. The standard approach based on cross-correlation processing yielded quite good results under ideal
conditions (as.s = 2, Fig. 4a). However, Hellinger and Bray-Curtis outperformed it. The use of processing based on
the Canberra metric is not suitable for these conditions.

As noise impulsivity increases (see data for as.s = 1.8, Fig. 4b), the conventional approach clearly becomes
the worst (Pus(y) values occur to be the largest for a wide range of y variation). The data processing method based
on Canberra distance is less efficient than for two other considered distances. The methods based on Hellinger and
Bray-Curtis distances perform in a similar manner. For more impulsive additive noise (see data for as.s = 1.6 and
1.4, Figures 4c and 4d, respectively), the conventional method fails even for y = 1. Meanwhile, it is possible to state
that the data processing method that relies on the Bray-Curtis metric performs in the best manner.

In practice, different situations are possible. First, one might know noise impulsivity (associated with as.s
for the SaS noise model) in advance. Then, the obtained results presented in Figures 3 and 4 allow for choosing the
most appropriate similarity metric (distance). If asqsis a priori known and it is difficult to measure it, a “robust”
approach can be applied. In this sense, we recommend using either the Minkowski distance with the parameter p
equal to unity or the Bray-Curtis distance. In the future, it seems possible to design some adaptive approach
presuming estimation of non-Gaussian noise parameters and proper selection of distance.

Probability of Abnormal Estimations, alpha = 2 Probability of Abnormal Estimations, alpha = 1.8
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Figure 3. Comparison of performance for the conventional approach and the proposed approach based on Minkowski distance
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Figure 4. Comparison of performance for the conventional approach and the proposed approach based on Canberra, Bray-Curtis,
and Hellinger distances

Conclusions

This article focuses on the application of similarity metrics in time delay estimation as an alternative to
conventional cross-correlation processing, which serves as a reliable technique for TDE for WNL signals in
favourable conditions of low-intensity Gaussian noise. It is shown that non-Gaussianty of the noise leads to a high
probability of abnormal estimates of time delay. The proposed method relies on using robust similarity metrics as
the basis of processing. Employing a robust distance metric as a CCF analogue provides rather fast and efficient
processing for non-Gaussian environment. Simulation data giving some insight for choosing the most suitable
metric based on noise parameters are presented. Through simulation results, it is evident that the proposed approach
demonstrates a significant improvement compared to the conventional method. As a result, future research will aim
to develop an adaptive metric that can be applied in practical situations.
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