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A HYBRID DEEP LEARNING AND INFORMATION-EXTREME APPROACH 

FOR BREAST CANCER HISTOPATHOLOGICAL IMAGE CLASSIFICATION 

 
The paper presents a method for classifying breast cancer histopathological whole-slide images using a deep learning model 

based on ResNet-50 and an Information-Extreme Learning (IET) classifier, which is crucial considering the increasing mortality rate from 

breast cancer year after year. The gold standard method of breast cancer diagnosis based on histopathological whole-slide images (HI) 
requires manual inspection of every region of the high-resolution image, which is time-consuming and error-prone. Computer-aided systems 

(CAD) powered by machine learning can speed up the work of a histopathologist and reduce the error rate of decision-making, thereby 

improving the accuracy and efficiency of the diagnostic process. Analysis of existing solutions has shown that deep neural networks, 

especially convolutional neural networks (CNNs), have the highest rate of functional efficiency in image classification tasks due to their 

ability to learn and extract relevant features from the input data automatically. However, the training stage demands a large amount of 

high-quality data, which is often scarce in histopathology, making it an open task to develop high-performance models with limited training 
image datasets. The proposed model was trained on the publicly available BreakHis dataset, achieving an 88.98% accuracy after only 20 

training epochs, outperforming other methods. The results demonstrate that using a pre-trained CNN on a non-domain-specific dataset can 

yield accurate feature extraction. This shows promise for enhancing CAD systems, especially in data-limited scenarios. The model was 
compared with simpler models based on local binary patterns for feature detection and support vector machines for classification, 

highlighting its superior performance and potential for real-world application in breast cancer diagnosis. 
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ГІБРИДНИЙ ПІДХІД НА ОСНОВІ ГЛИБОКОГО НАВЧАННЯ ТА ІНФОРМАЦІЙНО-ЕКСТРЕМАЛЬНОЇ 

ТЕХНОЛОГІЇ ДЛЯ КЛАСИФІКАЦІЇ ГІСТОПАТОЛОГІЧНИХ ЗОБРАЖЕНЬ РАКУ МОЛОЧНОЇ ЗАЛОЗИ 

 
У статті представлено метод класифікації гістопатологічних повнослайдових зображень раку молочної залози 

з використанням моделі глибокого навчання на основі ResNet-50 та класифікатора на основі інформаційно-екстремальної 
інтелектуальної технології (IEІT), що є критично важливим з огляду на зростаючу щорічну смертність від раку молочної 
залози. Золотим стандартом діагностики раку молочної залози на основі гістопатологічних повнослайдових зображень є 
ручний огляд кожної області зображення високої роздільної здатності, що потребує значного часу та є схильним до помилок. 
Системи автоматизованої діагностики (CAD) на основі машинного навчання можуть прискорити роботу гістопатолога 
та зменшити частоту помилок при прийнятті рішень, тим самим підвищуючи точність та ефективність діагностичного 
процесу. Аналіз наявних рішень показав, що глибокі нейронні мережі, особливо згорткові нейронні мережі (CNN), мають 
найвищий показник функціональної ефективності в задачах класифікації зображень завдяки їхній здатності автоматично 
навчатися та виділяти релевантні ознаки з вхідних даних. Проте етап навчання потребує великого обсягу якісних даних, 
які часто обмежені в гістопатології, що робить актуальною задачу розробки високоефективних моделей з обмеженими 
наборами навчальних зображень. Запропонована модель була навчена на загальнодоступному наборі даних BreakHis, 
досягнувши точності 88,98% лише за 20 епох навчання, перевершуючи інші методи. Результати демонструють, що 
використання попередньо навченої CNN на наборі даних, не специфічному для конкретної області, може забезпечити точне 
виділення ознак. Це свідчить про перспективність підходу для вдосконалення CAD-систем, особливо в умовах обмеженості 
даних. Порівняння з іншими моделями продемонструвало її потенціал для практичного застосування в діагностиці раку 
молочної залози. 

Ключові слова: згорткові нейронні мережі, машинне навчання, трансферне навчання, діагностика раку молочної 
залози, гістопатологія 

 
Introduction 

According to global cancer statistics, breast cancer is estimated to be the second leading cause of cancer 

death in women [1]. Early detection and treatment increase the chances of full recovery [2]. In Ukraine, the 

Chornobyl disaster led to a significant increase in breast cancer, especially in most contaminated areas [3]. With 

the war in Ukraine, the accessibility of medical services in general declined severely. In the case of breast cancer 

patients, it is essential to get diagnosed promptly; however, with the shortage of histopathologists caused by war 

actions on the territory of Ukraine, this is a challenging task [4]. In such a way, developing computer-aided 

systems for breast cancer detection and classification is in significant demand. Machine learning systems have 

already shown high functional efficiency in tasks of medical image analysis, in a study stating that AI/ML 

systems outperformed average radiologists by a significant margin (AUC improvement of +0.115, 95% 

confidence interval) [5], which paves application of such systems to other types of medical imaging. 

1. Analysis of the subject area 

1.1 Modern approaches to breast cancer diagnosis 

Among the most widespread breast cancer diagnosis techniques are mammography, MRI, 

ultrasonography, PET, breast MI, and biopsy. Table 1 presents a comparison of different methodologies [6]. 
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Table 1. 

Comparison of breast cancer diagnosis methodologies 

Method Use Limitations 

Mammography Mass screening. Scan soft tissue 

and blood vessels at the same 

time. 

Ionizing radiation, effectiveness 

drops with tissue density. 

Ultrasound Evaluate lumps found during 

mammography. 

Experienced operator required 

during examination. 

MRI High-risk young women can see 

small details of the tissue. 

Some types of cancer are non-

detectable using this method - 

such as ductal carcinoma. 

CT Detection of distant metastasis. Radiation risk, expensive 

scanner. 

PET Functional imaging of biological 

process. 

Ionizing radiation. 

Biopsy Histopathological whole-side 

imaging of the tissue is used to 

confirm diagnosis accurately. 

Requires surgery intervention to 

collect tissue material. 

 

Histological examination is considered the gold standard in cancer diagnosis [7]. Currently, it is almost 

the only way to confirm cancer diagnosis since noninvasive diagnosis methods cannot provide the same level of 

accuracy. In histopathology research, a specimen is dyed with stains (e.g., hematoxylin-eosin) to highlight tissue 

components under a microscope. According to the Nottingham Grading System, the assessment of breast cancer 

is mainly based on three morphological features in histology sections: tubule formation, nuclear pleomorphism, 

and the number of mitotic cells [8]. The whole side image is produced by photographing the tissue under a 

microscope. The output image has a high resolution, sometimes 100,000x100,000 pixels. 

A huge resolution of the histological image computer-aided systems CAD is essential to make 

examination results faster and more reliable. On the one hand, the huge resolution makes it hard for operators to 

examine each image closely. Still, on the other hand, it contains huge amounts of high-quality data, making it 

possible to apply modern machine-learning approaches to image object detection. 

1.2. Review of existing methods 

CAD systems for histological image analysis have a long history of improvement and development [9]. 

Generally, ML methods applied in CAD systems can be divided into two main types: classical machine learning 

methods, which use manually defined image feature extraction techniques, and deep learning methods with 

automatic feature learning techniques [10]. Since 2012, a deep learning-based algorithm has outperformed 

classical image classification approaches, and there has been growing interest in developing deep learning-based 

systems [11]. The following section provides a brief overview of both approaches applied to the task of breast 

cancer detection by histological images. 

Pin Wang et al, proposed automatic quantitative image analysis for breast cancer detection [12]. For the 

nuclei segmentation, top-bottom hat transform was applied, thus enhancing image quality. To obtain regions of 

interest (ROIs), wavelet decomposition and multi-scale region-growing (WDMR) were combined to obtain areas 

of interest (ROIs), thereby realizing precise location. Overlapped cells were split using a double-strategy model 

(DSSM) containing adaptive mathematical morphology and Curvature Scale Space (CSS) for better accuracy 

and robustness. To obtain optimal features, a support vector machine (SVM) with a chain-like agent genetic 

algorithm (CAGA). The proposed method used for testing 68 breast cancer histopathological images, 

classification reached high accuracy 96.19% (±0.31%) for accuracy, 99.05% (±0.27%) for sensitivity, and 

93.33% (±0.81%) for specificity. 

ML systems are generally data-driven, meaning the training dataset's quality directly influences the 

overall system functional efficiency in the exam mode. Spanhol et al. made available an online breast cancer 

histopathological images dataset containing 7909 images [13]. The original paper also contained approaches to 

solving the cancer image classification issue using hand-crafted feature descriptors. The authors used several 

texture descriptors: uniform Local Binary Pattern (LBP), Complete LBP (CLBP), Local Phase Quantization 

(LPQ), Grey Level Co-occurrence Matrix (GLCM), parameter-Free Threshold Adjacency Statistics (PFTAS), 

for classifiers were used four different classifiers: 1-Nearest Neighbor (1-NN), Quadratic Linear Analysis 

(QDA), Support Vector Machines (SVM), and Random Forests of Decision Trees. The accuracy was measured 

on the patient level and aggregated to get the overall score. PFTAS features vectors with SVM classifiers 

performed the best, having an overall accuracy of 85.1%. The dataset is widely used in research as a convenient 

tool for comparing the efficiency of different algorithms. 

Using the same BreakHis dataset, Spanhol et al. developed a convolutional neural network (CNN) based 

system for cancer image classification [14]. Compared with the original paper for the BerakHis dataset [13], 

where hand-crafted feature descriptors were used, this paper used a deep learning approach for automatic feature 

learning. The paper also proposes the method for extraction and combination image patches used for the CNN 

training stage, thus decreasing the computational resource usage. Using patch sizes of 32×32 or 64×64 made it 
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possible to use the AlexNet model [15]. Classification accuracy increased by around 6% compared with hand-

crafted feature descriptors. 

Matos et al. continued the research based on the BreakHis dataset and image patching approach in their 

paper [15]. Their approach is based on patching the initial image - however, only relevantly classified patches 

are used for training. For discriminating patches as relevant and irrelevant, there was a separate SVM classifier 

trained on the CRC dataset [16] using as a feature descriptor in one case handcrafted PFTAS and in another pre-

trained InceptionV3 network [19]. Interestingly, pretraining of the InceptionV3 was made on the ImageNet 

dataset. On the second stage the classifier trained in the first stage was used to choose only relevant patches from 

BreakHis images to train the final SVM classifier. In such a way, there are two procedures of transfer learning, 

one from the CRC dataset to the BreakHis dataset and another one from ImageNet to the CRC and BreakHis 

datasets. The obtained system was able to classify images as malign and benign tumors with an accuracy of 

around 89% for the PFTAS features descriptor and around 97% accuracy for InceptionV3 as the features 

extractor. 

In the work [18], an analysis of approaches used to diagnose breast cancer using machine learning 

techniques was conducted. The authors use a form of systematic review-structured evidence synthesis to compare 

different approaches. According to the review, algorithms based on deep learning and convolutional neural 

networks are state-of-the-art solutions that provide high functional efficiency for the end solution.  

1.3. Conclusion on Existing Approaches 

The dominance of ML methods based on the deep neural network is now evident. Universal neural 

network approximation theorem statements, together with modern techniques of image representation learning, 

make this class of methods one of the most powerful currently existing. New techniques of features embedding 

like attention [19], make the class of algorithm even more capable. However, this class of ML algorithms is 

highly data-driven, and the system accuracy depends on the quality of data provided during the training stage. 

Deep learning systems usually have a big learning capacity and are prone to overfitting. Developed numerous 

effective techniques to prevent model overfitting, for example, dropout [20]. Another problem is the need for a 

relatively big, balanced, diverse dataset. This is especially a problem in the field of histopathological cancer 

diagnosis. High-quality histological whole-side image datasets are hard to obtain. This is highly specialized 

imaging; usage of those assets needs legal approval from the patients. In such cases, especially important 

techniques like image augmentation [21] or synthetic dataset generation [22]. In conclusion, it's evident that deep 

learning-based algorithms have a proven level of accuracy. However, from the literature overview, it's clear that 

this approach cannot be easily transferred from one field to another; it requires the solution of numerous 

supplement tasks like neural network topology engineering, dataset preparation, features engineering, overfitting 

effective parameters learning, choosing the right cost function, etc. 

 

2. Building a machine learning system 

2.1. Dataset description 

From the literature overview following the quality of training data directly affects the overall system 

accuracy in the exam mode. Thus, one of the first stages of ML system engineering is selection of the dataset. In 

our case, the BreakHis dataset of histopathological images [13] was chosen. The dataset has several advantages: 

it contains a large amount of labeled histopathological breast cancer images making it very widespread in the 

research field - which in turn makes it possible to compare our results with results of other approaches.  

The dataset contains breast tumor microscopic images of several types. Labels contain tumor type as 

well as patient information. Samples are obtained from breast tissue biopsy slides, stained with hematoxylin and 

eosin (HE). The preparation routine is pretty standard, which makes this dataset transferable to real-life scenarios. 

Images were made in 3-channel RGB (Red-Green-Blue) TrueColor (24-bit color depth, 8 bits per color channel) 

color space having different magnifying factors of 40, 100, 200 and 400. Fig. 1 presented examples of dataset 

images with different magnification factors: (a) 40, (b) 100, (c) 200, and (d) 400. 

The dataset contains a total of 7909 labeled images of a total of 82 patients. The dataset contains 

labels of benign and malignant types of cancer. However, it should be said that the dataset is not balanced - 

malignant classes have more items in the dataset. Table 2 presents image distribution by magnification and 

class. 

 

Table 2 

Presents image distribution by magnification and class 

Magnification Benign Malignant Total 

40 625 1370 1995 

100 644 1437 2081 

200 623 1390 2013 

400 588 1232 1820 

Total 2480 5429 7909 

Patients 24 58 82 
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Fig. 1. BreakHis dataset images examples with different magnification factors (a) 40, (b) 100, (c) 200, and (d) 400. Highlighted 

rectangles are areas of interest selected by pathologists for magnification on the next image 

 

2.2. Description of the proposed methods 

The goal of the system is to perform binary classification of benign and malignant histopathological 

cancer images. For feature description, the proposed method is based on ResNet-50, which is pretrained on the 

ImageNet dataset [23]. ResNet-50 contains 50 layers. Network topology includes residual blocks - which make 

it possible to train deep neural networks effectively. Residual Blocks are skip-connection blocks that learn 

residual functions with reference to the layer inputs. Having such skip connections makes it easier to pass the 

data between layers of deep neural networks. As a result, gradient values are not dimmed at the top layers of the 

network, making the learning procedure faster. The classification layer of ResNet-50 was replaced with a global 

poling layer followed by a fully connected dense layer with a size of output 100. As activation of the dense layer 

was used, a rectified linear unit (RELU) [24]. For overfitting prevention, a dropout layer was used, with a dropout 

rate of 0.2. In such a way, a feature vector with a size of 100 can be obtained. For implementation, Tensorflow 

Keras API version 2.15.0 was used [25]. 

As a classifier of extracted features, the information extreme method (IET) was developed at Sumu 

State University [26]. The approach is based on the maximization of information criteria by finding optimal 

parameters in the process of training, thus forming an optimal information sense set of decisive rules. In our case, 

an IET approach with a second level of machine learning depth was used to optimize control tolerance and 

hyperspherical container radius.  

The IEI approach performs transformation of the input matrix Y of training samples into training binary 

matrix X, which enables to perform with maximum possible probability correct classification decisions with the 

method of permissible transformations in machine learning. In the work [27], it was shown that the IET method's 

functional efficiency depends on the quality features of the engineering procedure. The Hamming binary space 

approach introduces a set of {𝑔𝑚} machine learning parameters which affect the functional efficiency of the IET 

algorithm. The set of optimal parameters has the following form: 

𝑔𝑚 =< 𝑥𝑚 , 𝑑𝑚, 𝛿𝑘 >, 
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where 𝑥𝑚– is the average of the structured feature vector of the recognition class from the alphabet 

𝑋𝑚
𝑜 ; 𝑑𝑚 – radius of the recognition class hyper spherical container for 𝑋𝑚

𝑜 , which is restored in the radial basis 

of the recognition features space; 𝛿𝑘  – parameter of the control tolerances for the recognition features field, 

which is equal to half of the symmetric field control tolerances. 

As a criterion for optimization of machine learning parameters, IET is known to use the modified 

Kullback measure. 

𝑬𝒎
(𝒌) =

𝒏 −  (𝑲𝟏,𝒎
(𝒌) + 𝑲𝟐,𝒎

(𝒌) )

𝒏

𝟐𝒏 + 𝝃 − 𝑲𝟏,𝒎
(𝒌) − 𝑲𝟏,𝒎

(𝒌)

𝑲𝟏,𝒎
(𝒌) + 𝑲𝟏,𝒎

(𝒌) + 𝝃
 

where 𝐾1,𝑚
(𝑘)

 – number of false negative events, 𝐾2,𝑚
(𝑘)

  – number of false positive events, ξ – small number to 

prevent division on zero. 

2.3. Training stage of the system 

The ResNet-50-based backbone of the proposed approach was trained on the BreakHist dataset. Each 

image was preprocessed - converted from RGB format to BGR, then each color channel was zero-centered with 

respect to the ImageNet dataset, without scaling. To prevent ResNet-50 pretrained weights from being 

overwritten during the training stage, its weights were frozen, so that only dense layer weights were trained. The 

total number of dense layer trainable parameters is 204,900. As loss function was used binary cross entropy. A 

stochastic gradient based optimization approach was used - method based on adaptive estimates of lower-order 

moments [28]. Two separate runs of training were performed for 20 and 50 epochs. Actual training was 

performed on the Nvidia RTX 3050 GPU device. In Fig. 2, graphs of loss function per epoch are presented. As 

you can see from the graph the loss function value approximately after the 20th epoch is saturated and was not 

changing too much. 

After the training on the input of the backbone, training samples were passed, as the input obtained 

feature vectors with a size of 100. The resulting feature vectors were used to train IET-based classifiers. For 

training, we used control tolerance ranging from 0 to 100. The training stage was performed for two sets of 

feature vectors - obtained as the result of the training backbone for 20 and 50 epochs, respectively. Fig. 3. 

presented graphs of information criterion relative value by control tolerance value for features from the two sets 

mentioned above. Information criterion’s relative value is a fraction of max possible criterion value - reached on 

false positive and false negative values are zero. As can be seen from the graphs, the information criterion reached 

a bigger value for features obtained from backbone trained for 20 epochs at 0.78, compared to 50 epochs features 

at 0.46. Considering backbone training loss displayed in Fig. 2, we can assume that after the 20th epoch, our 

feature extraction dense layer started to overfit, thus producing worse results at the end. 

‘  
Fig. 2. Training binary cross entropy loss per epoch 

 

The result of IET training was obtained following optimal parameters, see Table 3. 

Table 3 

IET optimal parameters 

Backbone epochs 
Optimal control 

tolerance 

Optimal Radii 

Malign Benign 

20 8 15 18 

50 20 13 13 
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Fig. 3 Relative information criterion values by control tolerance values, light gray area - is working area, dark gray - is max value 

area, (a) - graph for IET training run using features from ResNet-50 based approach trained for 50 epochs, (b) - graph for IET 

training run using features from ResNet-50 based approach trained for 50 epochs. 

 

3. Results 

For accuracy evaluation of the obtained model was used the approach described in original BreakHis 

dataset paper [13]. The dataset was divided into training (70%) and testing subsets (30%). To guarantee the 

generalization of the classifier, the dataset was split into the patient-wise non-overlapping manner in training and 

test datasets - in such a way it is guaranteed that patients from the test set are not presented in the training set. 

For the actual split - was used script from the original paper [13] and [14] - making possible results comparison. 

For our model accuracy evaluation, images with a magnification of 200 only. We measured the accuracy image 

wise - meaning was measured total accuracy of the overall test set. 

The test set contained a total of 744 samples. Results were measured separately for 20 and 50 epochs 

trained backbone features, see table 4. 

Table 4 

Accuracy results 

Backbone epochs Accuracy 

20 88.98% 

50 81.18% 
 

As can be seen, a backbone that is trained for 20 epochs results in higher accuracy. We can also compare 

results for the approach from BreakHis dataset authors based on CNN. In their approach image, image-wise 

accuracy for 200 magnification factor was 84.0% with a standard deviation of 3.2 [14]. 

Conclusions 

The problem of automatic classification of breast cancer as malignant and benign, based on computed 

histopathological images using machine learning algorithms, was considered. 

Performed literature overview of existing approaches, compared their functional efficiency and existing 

challenges. The proposed approach to classifying breast cancer histopathological images based on multistage 

procedure- ResNet-50 based backbone for features extraction and IET classifier for binary classification. Based 

on the result of the research it can be stated that backbone pre-training even on non-domain specific dataset - 

like ImageNet produces good results for features extraction. This can be explained by the fact that spatial patterns 

and textures on the ImageNet and histopathological images of breast cancer still have common primitives. For 

example, we can imagine that features extracted from ImageNet grass image regions can have similar texture 

patterns with some tissue nuclei. This also explains a well-known fact why image augmentation increases the 

functional efficiency of image classification systems. We can assume that by using augmented images a network 

can learn more types of primitive patterns, textures and use it as building blocks for construction of more 

complicated units on the deep levels of the network. Similar results were obtained in research [14] where the 

AlexNet CNN network was pretrained on the ImageNet dataset. The obtained model performance has 

comparable results with state-of-the-art approaches. 

The work was carried out as part of the Scientific Research Work "Information technology models and 

methods for analysis and synthesis of structural, information and functional models, objects and automated 

processes" (state registration number 0120U103071, Ministry of Education and Science of Ukraine) 
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