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A HYBRID DEEP LEARNING AND INFORMATION-EXTREME APPROACH
FOR BREAST CANCER HISTOPATHOLOGICAL IMAGE CLASSIFICATION

The paper presents a method for classifying breast cancer histopathological whole-slide images using a deep learning model
based on ResNet-50 and an Information-Extreme Learning (IET) classifier, which is crucial considering the increasing mortality rate from
breast cancer year after year. The gold standard method of breast cancer diagnosis based on histopathological whole-slide images (HI)
requires manual inspection of every region of the high-resolution image, which is time-consuming and error-prone. Computer-aided systems
(CAD) powered by machine learning can speed up the work of a histopathologist and reduce the error rate of decision-making, thereby
improving the accuracy and efficiency of the diagnostic process. Analysis of existing solutions has shown that deep neural networks,
especially convolutional neural networks (CNNs), have the highest rate of functional efficiency in image classification tasks due to their
ability to learn and extract relevant features from the input data automatically. However, the training stage demands a large amount of
high-quality data, which is often scarce in histopathology, making it an open task to develop high-performance models with limited training
image datasets. The proposed model was trained on the publicly available BreakHis dataset, achieving an 88.98% accuracy after only 20
training epochs, outperforming other methods. The results demonstrate that using a pre-trained CNN on a non-domain-specific dataset can
yield accurate feature extraction. This shows promise for enhancing CAD systems, especially in data-limited scenarios. The model was
compared with simpler models based on local binary patterns for feature detection and support vector machines for classification,
highlighting its superior performance and potential for real-world application in breast cancer diagnosis.
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MMAIMYEHKO OJIEKCAHJP, KY3IKOB BOPUC

CyMCBKUI IepyKaBHUH YHIBEPCUTET

r IBPHﬂHHﬁ.HIHXIﬂ HA OCHOBI I'VIMBOKOI'O HABYAHHSI TA IH(I)OPMAHIﬁHO-EKCTPEMAHLHOi
TEXHOJIOTTI 1JISI KIACH®PIKALIL TTICTOMATOJIOTTYHUX 30BPAKEHD PAKY MOJIOYHOI 3AJ103U

Y cmammi npedcmasseHo memod kaacudikayii zicmonamosio2iuHuX n08HOCAALI008UX 306padCEHb PAKY MOI0HHOI 3a103U
3 BUKOPUCMAHHSIM MoOdeni 21Uub0ko20 HagyaHHsl Ha ocHosi ResNet-50 ma kaacugikamopa Ha ocHosi iHgpopmayitiHo-ekcmpemManbHOi
iHmesekmyaavHoi mexnosoeii (IEIT), wo € Kpumu4HO 8a*CAUBUM 3 0241510y HA 3pOCMAKOMY WOPIYHY CMepmHICMb 8I0 paky MO/I04YHOT
3a.103u. 3010mumM cmaxndapmom diazHOCMUKU paKy MO/104HOI 3a103U HA OCHOBI 2icmonamo/102i4HUX NOBHOCAALI008UX 306paAJCEHb €
DY4HULI 021510 KOXHCHOT 061acmi 306padiceHHs 8UCOKOT po30inbHOT 30amHocmi, Wo hompe6ye 3HA4HO20 4aCy MA € CXUALHUM 00 NOMUJIOK.
Cucmemu asmomamusosaHoi diaznocmuku (CAD) Ha 0cHO8I MAWUHHO20 HABYAHHS MOJXHCYMb NPUCKOPUMU pobomy 2icmonamo.ioza
ma 3sMeHWumu 4acmomy noOMu/10K npu NputiHAmMmi piwileHs, mum camum nidsuwjyro4u moyHicme ma epekmueHicme diazHOCMUYHO20
npoyecy. AHani3 HAsIBHUX piwleHb Noka3as, wo 2Auboki HelipoHHi mepedici, 0cob6.au80 320pmkosi HelipouHi mepedici (CNN), maromb
Hatiguwull nokasHuk gyHkyioHaabHoi edpekmusHocmi @ 3adauax kaacugikayii 306pasceHsb 3a80aku ixwHiti 30amHocmi asmomamuyHo
Hasuamucst ma eudingmu pesne8aHmMHI 03Haku 3 8xioHux daxux. [Ipome eman HaguaHHs1 nompeo6ye 8enuKo20 06csi2y AKICHUX 0aHUX,
SIKI yacmo obMediceHi 8 2zicmonamo.iozii, o pobums akmya/bHow 3adavy po3pobKu sucokoegekmusHux modesell 3 06MeNceHUMU
Habopamu Has4a/abHUX 306pasceHb. 3anponoHoeaHa modenb 6y/na HABYEHA HA 302a/1bHO00CMYNHOMYy Habopi daHux BreakHis,
docsieHyswu movHocmi 88,98% auwe 3a 20 enox Has4aHMsl, nepegepulyiovu iHwi memoodu. Peyabmamu demoHcmpyroms, uo
suKopucmaHsl nonepedHbo HasyeHoi CNN Ha Habopi daHux, He cheyuditHoMy 04151 KOHKpemHol obaacmi, Modce 3a6e3neyumu moyHe
suodisneHHs o3Hak. Lle ceiduums npo nepcnekmusHicmuv nidxody 0415 edockoHareHHs1 CAD-cucmem, ocobauso 8 ymosax obmesxceHocmi
daHux. [lopieHsHHA 3 THWUMU MOdeasMU npodeMoHcmpy8ano ii nomeHyiaa 0151 nNpakKMu4HO20 3acmocy8aHHsl 8 diazHocmuyi paky
MOJI0YHOI 3a103U.

Karouoai cnoea: 3zopmkosi HelipoHHI Mepedici, MawuHHe HA8YaHHs, mpaHcdepHe HABUAHHS, Jia2ZHOCMUKA PAKy MO104HOT
3a/103U, 2icmonamoJozis

Introduction

According to global cancer statistics, breast cancer is estimated to be the second leading cause of cancer
death in women [1]. Early detection and treatment increase the chances of full recovery [2]. In Ukraine, the
Chornobyl disaster led to a significant increase in breast cancer, especially in most contaminated areas [3]. With
the war in Ukraine, the accessibility of medical services in general declined severely. In the case of breast cancer
patients, it is essential to get diagnosed promptly; however, with the shortage of histopathologists caused by war
actions on the territory of Ukraine, this is a challenging task [4]. In such a way, developing computer-aided
systems for breast cancer detection and classification is in significant demand. Machine learning systems have
already shown high functional efficiency in tasks of medical image analysis, in a study stating that AI/ML
systems outperformed average radiologists by a significant margin (AUC improvement of +0.115, 95%
confidence interval) [5], which paves application of such systems to other types of medical imaging.

1. Analysis of the subject area
1.1 Modern approaches to breast cancer diagnosis

Among the most widespread breast cancer diagnosis techniques are mammography, MRI,

ultrasonography, PET, breast MI, and biopsy. Table 1 presents a comparison of different methodologies [6].
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Table 1.
Comparison of breast cancer diagnosis methodologies
Method Use Limitations
Mammography Mass screening. Scan soft tissue lonizing radiation, effectiveness
and blood vessels at the same drops with tissue density.
time.
Ultrasound Evaluate lumps found during Experienced operator required
mammography. during examination.
MRI High-risk young women can see Some types of cancer are non-
small details of the tissue. detectable using this method -
such as ductal carcinoma.
CT Detection of distant metastasis. Radiation risk, expensive
scanner.
PET Functional imaging of biological Ionizing radiation.
process.
Biopsy Histopathological whole-side Requires surgery intervention to
imaging of the tissue is used to collect tissue material.
confirm diagnosis accurately.

Histological examination is considered the gold standard in cancer diagnosis [7]. Currently, it is almost
the only way to confirm cancer diagnosis since noninvasive diagnosis methods cannot provide the same level of
accuracy. In histopathology research, a specimen is dyed with stains (e.g., hematoxylin-eosin) to highlight tissue
components under a microscope. According to the Nottingham Grading System, the assessment of breast cancer
is mainly based on three morphological features in histology sections: tubule formation, nuclear pleomorphism,
and the number of mitotic cells [8]. The whole side image is produced by photographing the tissue under a
microscope. The output image has a high resolution, sometimes 100,000x100,000 pixels.

A huge resolution of the histological image computer-aided systems CAD is essential to make
examination results faster and more reliable. On the one hand, the huge resolution makes it hard for operators to
examine each image closely. Still, on the other hand, it contains huge amounts of high-quality data, making it
possible to apply modern machine-learning approaches to image object detection.

1.2. Review of existing methods

CAD systems for histological image analysis have a long history of improvement and development [9].
Generally, ML methods applied in CAD systems can be divided into two main types: classical machine learning
methods, which use manually defined image feature extraction techniques, and deep learning methods with
automatic feature learning techniques [10]. Since 2012, a deep learning-based algorithm has outperformed
classical image classification approaches, and there has been growing interest in developing deep learning-based
systems [11]. The following section provides a brief overview of both approaches applied to the task of breast
cancer detection by histological images.

Pin Wang et al, proposed automatic quantitative image analysis for breast cancer detection [12]. For the
nuclei segmentation, top-bottom hat transform was applied, thus enhancing image quality. To obtain regions of
interest (ROIs), wavelet decomposition and multi-scale region-growing (WDMR) were combined to obtain areas
of interest (ROIs), thereby realizing precise location. Overlapped cells were split using a double-strategy model
(DSSM) containing adaptive mathematical morphology and Curvature Scale Space (CSS) for better accuracy
and robustness. To obtain optimal features, a support vector machine (SVM) with a chain-like agent genetic
algorithm (CAGA). The proposed method used for testing 68 breast cancer histopathological images,
classification reached high accuracy 96.19% (£0.31%) for accuracy, 99.05% (+0.27%) for sensitivity, and
93.33% (+0.81%) for specificity.

ML systems are generally data-driven, meaning the training dataset's quality directly influences the
overall system functional efficiency in the exam mode. Spanhol et al. made available an online breast cancer
histopathological images dataset containing 7909 images [13]. The original paper also contained approaches to
solving the cancer image classification issue using hand-crafted feature descriptors. The authors used several
texture descriptors: uniform Local Binary Pattern (LBP), Complete LBP (CLBP), Local Phase Quantization
(LPQ), Grey Level Co-occurrence Matrix (GLCM), parameter-Free Threshold Adjacency Statistics (PFTAS),
for classifiers were used four different classifiers: 1-Nearest Neighbor (1-NN), Quadratic Linear Analysis
(QDA), Support Vector Machines (SVM), and Random Forests of Decision Trees. The accuracy was measured
on the patient level and aggregated to get the overall score. PFTAS features vectors with SVM classifiers
performed the best, having an overall accuracy of 85.1%. The dataset is widely used in research as a convenient
tool for comparing the efficiency of different algorithms.

Using the same BreakHis dataset, Spanhol et al. developed a convolutional neural network (CNN) based
system for cancer image classification [14]. Compared with the original paper for the BerakHis dataset [13],
where hand-crafted feature descriptors were used, this paper used a deep learning approach for automatic feature
learning. The paper also proposes the method for extraction and combination image patches used for the CNN
training stage, thus decreasing the computational resource usage. Using patch sizes of 32x32 or 64x64 made it
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possible to use the AlexNet model [15]. Classification accuracy increased by around 6% compared with hand-
crafted feature descriptors.

Matos et al. continued the research based on the BreakHis dataset and image patching approach in their
paper [15]. Their approach is based on patching the initial image - however, only relevantly classified patches
are used for training. For discriminating patches as relevant and irrelevant, there was a separate SVM classifier
trained on the CRC dataset [16] using as a feature descriptor in one case handcrafted PFTAS and in another pre-
trained InceptionV3 network [19]. Interestingly, pretraining of the InceptionV3 was made on the ImageNet
dataset. On the second stage the classifier trained in the first stage was used to choose only relevant patches from
BreakHis images to train the final SVM classifier. In such a way, there are two procedures of transfer learning,
one from the CRC dataset to the BreakHis dataset and another one from ImageNet to the CRC and BreakHis
datasets. The obtained system was able to classify images as malign and benign tumors with an accuracy of
around 89% for the PFTAS features descriptor and around 97% accuracy for InceptionV3 as the features
extractor.

In the work [18], an analysis of approaches used to diagnose breast cancer using machine learning
techniques was conducted. The authors use a form of systematic review-structured evidence synthesis to compare
different approaches. According to the review, algorithms based on deep learning and convolutional neural
networks are state-of-the-art solutions that provide high functional efficiency for the end solution.

1.3. Conclusion on Existing Approaches

The dominance of ML methods based on the deep neural network is now evident. Universal neural
network approximation theorem statements, together with modern techniques of image representation learning,
make this class of methods one of the most powerful currently existing. New techniques of features embedding
like attention [19], make the class of algorithm even more capable. However, this class of ML algorithms is
highly data-driven, and the system accuracy depends on the quality of data provided during the training stage.
Deep learning systems usually have a big learning capacity and are prone to overfitting. Developed numerous
effective techniques to prevent model overfitting, for example, dropout [20]. Another problem is the need for a
relatively big, balanced, diverse dataset. This is especially a problem in the field of histopathological cancer
diagnosis. High-quality histological whole-side image datasets are hard to obtain. This is highly specialized
imaging; usage of those assets needs legal approval from the patients. In such cases, especially important
techniques like image augmentation [21] or synthetic dataset generation [22]. In conclusion, it's evident that deep
learning-based algorithms have a proven level of accuracy. However, from the literature overview, it's clear that
this approach cannot be easily transferred from one field to another; it requires the solution of numerous
supplement tasks like neural network topology engineering, dataset preparation, features engineering, overfitting
effective parameters learning, choosing the right cost function, etc.

2. Building a machine learning system
2.1. Dataset description

From the literature overview following the quality of training data directly affects the overall system
accuracy in the exam mode. Thus, one of the first stages of ML system engineering is selection of the dataset. In
our case, the BreakHis dataset of histopathological images [13] was chosen. The dataset has several advantages:
it contains a large amount of labeled histopathological breast cancer images making it very widespread in the
research field - which in turn makes it possible to compare our results with results of other approaches.

The dataset contains breast tumor microscopic images of several types. Labels contain tumor type as
well as patient information. Samples are obtained from breast tissue biopsy slides, stained with hematoxylin and
eosin (HE). The preparation routine is pretty standard, which makes this dataset transferable to real-life scenarios.
Images were made in 3-channel RGB (Red-Green-Blue) TrueColor (24-bit color depth, 8 bits per color channel)
color space having different magnifying factors of 40, 100, 200 and 400. Fig. 1 presented examples of dataset
images with different magnification factors: (a) 40, (b) 100, (c) 200, and (d) 400.

The dataset contains a total of 7909 labeled images of a total of 82 patients. The dataset contains
labels of benign and malignant types of cancer. However, it should be said that the dataset is not balanced -
malignant classes have more items in the dataset. Table 2 presents image distribution by magnification and
class.

ISSN 2307-5732

Table 2
Presents image distribution by magnification and class

Magnification Benign Malignant Total
40 625 1370 1995
100 644 1437 2081
200 623 1390 2013
400 588 1232 1820
Total 2480 5429 7909
Patients 24 58 82
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Fig. 1. BreakHis dataset images examples with different magnification factors (a) 40, (b) 100, (c) 200, and (d) 400. Highlighted
rectangles are areas of interest selected by pathologists for magnification on the next image

2.2. Description of the proposed methods

The goal of the system is to perform binary classification of benign and malignant histopathological
cancer images. For feature description, the proposed method is based on ResNet-50, which is pretrained on the
ImageNet dataset [23]. ResNet-50 contains 50 layers. Network topology includes residual blocks - which make
it possible to train deep neural networks effectively. Residual Blocks are skip-connection blocks that learn
residual functions with reference to the layer inputs. Having such skip connections makes it easier to pass the
data between layers of deep neural networks. As a result, gradient values are not dimmed at the top layers of the
network, making the learning procedure faster. The classification layer of ResNet-50 was replaced with a global
poling layer followed by a fully connected dense layer with a size of output 100. As activation of the dense layer
was used, a rectified linear unit (RELU) [24]. For overfitting prevention, a dropout layer was used, with a dropout
rate of 0.2. In such a way, a feature vector with a size of 100 can be obtained. For implementation, Tensorflow
Keras API version 2.15.0 was used [25].

As a classifier of extracted features, the information extreme method (IET) was developed at Sumu
State University [26]. The approach is based on the maximization of information criteria by finding optimal
parameters in the process of training, thus forming an optimal information sense set of decisive rules. In our case,
an IET approach with a second level of machine learning depth was used to optimize control tolerance and
hyperspherical container radius.

The IEI approach performs transformation of the input matrix Y of training samples into training binary
matrix X, which enables to perform with maximum possible probability correct classification decisions with the
method of permissible transformations in machine learning. In the work [27], it was shown that the IET method's
functional efficiency depends on the quality features of the engineering procedure. The Hamming binary space
approach introduces a set of {g,,,} machine learning parameters which affect the functional efficiency of the I[ET
algorithm. The set of optimal parameters has the following form:

Gm =< X, dp, 6k >,
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where x,,— is the average of the structured feature vector of the recognition class from the alphabet
X%, dp, —radius of the recognition class hyper spherical container for X2, which is restored in the radial basis
of the recognition features space; &, — parameter of the control tolerances for the recognition features field,
which is equal to half of the symmetric field control tolerances.

As a criterion for optimization of machine learning parameters, IET is known to use the modified
Kullback measure.

n— (K¢, +KY)2n+&— k{9 — K,

2,m 1,m

n K® + Kk +¢&

,m

EY =

where Kl(’;)l —number of false negative events, KZ(':,)l — number of false positive events,  — small number to

prevent division on zero.
2.3. Training stage of the system

The ResNet-50-based backbone of the proposed approach was trained on the BreakHist dataset. Each
image was preprocessed - converted from RGB format to BGR, then each color channel was zero-centered with
respect to the ImageNet dataset, without scaling. To prevent ResNet-50 pretrained weights from being
overwritten during the training stage, its weights were frozen, so that only dense layer weights were trained. The
total number of dense layer trainable parameters is 204,900. As loss function was used binary cross entropy. A
stochastic gradient based optimization approach was used - method based on adaptive estimates of lower-order
moments [28]. Two separate runs of training were performed for 20 and 50 epochs. Actual training was
performed on the Nvidia RTX 3050 GPU device. In Fig. 2, graphs of loss function per epoch are presented. As
you can see from the graph the loss function value approximately after the 20th epoch is saturated and was not
changing too much.

After the training on the input of the backbone, training samples were passed, as the input obtained
feature vectors with a size of 100. The resulting feature vectors were used to train IET-based classifiers. For
training, we used control tolerance ranging from 0 to 100. The training stage was performed for two sets of
feature vectors - obtained as the result of the training backbone for 20 and 50 epochs, respectively. Fig. 3.
presented graphs of information criterion relative value by control tolerance value for features from the two sets
mentioned above. Information criterion’s relative value is a fraction of max possible criterion value - reached on
false positive and false negative values are zero. As can be seen from the graphs, the information criterion reached
a bigger value for features obtained from backbone trained for 20 epochs at 0.78, compared to 50 epochs features
at 0.46. Considering backbone training loss displayed in Fig. 2, we can assume that after the 20th epoch, our
feature extraction dense layer started to overfit, thus producing worse results at the end.

model loss

—— training loss
0.35

0.30 A

0.25 A

0.20 -

loss

0.15 4

0.10 +

0.05 A

0.00 A

0 10 20 30 40 50
‘ epoch

Fig. 2. Training binary cross entropy loss per epoch

The result of IET training was obtained following optimal parameters, see Table 3.

Table 3
IET optimal parameters
Optimal control Optimal Radii
Backbone epochs tolerance Malign Benign
20 8 15 18
50 20 13 13
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Fig. 3 Relative information criterion values by control tolerance values, light gray area - is working area, dark gray - is max value
area, (a) - graph for IET training run using features from ResNet-50 based approach trained for 50 epochs, (b) - graph for IET
training run using features from ResNet-50 based approach trained for 50 epochs.

3. Results

For accuracy evaluation of the obtained model was used the approach described in original BreakHis
dataset paper [13]. The dataset was divided into training (70%) and testing subsets (30%). To guarantee the
generalization of the classifier, the dataset was split into the patient-wise non-overlapping manner in training and
test datasets - in such a way it is guaranteed that patients from the test set are not presented in the training set.
For the actual split - was used script from the original paper [13] and [14] - making possible results comparison.
For our model accuracy evaluation, images with a magnification of 200 only. We measured the accuracy image
wise - meaning was measured total accuracy of the overall test set.

The test set contained a total of 744 samples. Results were measured separately for 20 and 50 epochs
trained backbone features, see table 4.

Table 4
Accuracy results
Backbone epochs Accuracy
20 88.98%
50 81.18%

As can be seen, a backbone that is trained for 20 epochs results in higher accuracy. We can also compare
results for the approach from BreakHis dataset authors based on CNN. In their approach image, image-wise
accuracy for 200 magnification factor was 84.0% with a standard deviation of 3.2 [14].

Conclusions

The problem of automatic classification of breast cancer as malignant and benign, based on computed
histopathological images using machine learning algorithms, was considered.

Performed literature overview of existing approaches, compared their functional efficiency and existing
challenges. The proposed approach to classifying breast cancer histopathological images based on multistage
procedure- ResNet-50 based backbone for features extraction and IET classifier for binary classification. Based
on the result of the research it can be stated that backbone pre-training even on non-domain specific dataset -
like ImageNet produces good results for features extraction. This can be explained by the fact that spatial patterns
and textures on the ImageNet and histopathological images of breast cancer still have common primitives. For
example, we can imagine that features extracted from ImageNet grass image regions can have similar texture
patterns with some tissue nuclei. This also explains a well-known fact why image augmentation increases the
functional efficiency of image classification systems. We can assume that by using augmented images a network
can learn more types of primitive patterns, textures and use it as building blocks for construction of more
complicated units on the deep levels of the network. Similar results were obtained in research [14] where the
AlexNet CNN network was pretrained on the ImageNet dataset. The obtained model performance has
comparable results with state-of-the-art approaches.

The work was carried out as part of the Scientific Research Work "Information technology models and
methods for analysis and synthesis of structural, information and functional models, objects and automated
processes" (state registration number 01200103071, Ministry of Education and Science of Ukraine)
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