Technical sciences ISSN 2307-5732

DOI 10.31891/2307-5732-2024-343-6-17
VIK 004

KOSTYUCHENKO ARTEM
Zhytomyr Polytechnic State University
https://orcid.org/0009-0000-7606-042X

e-mail: ipzm241_kav@student.ztu.edu.ua

LOKTIKOVA TAMARA
Zhytomyr Polytechnic State University
https://orcid.org/0000-0002-3525-0179
e-mail; dfikt_ltn@ztu.edu.ua
KUSHNIR NADIA
Zhytomyr Polytechnic State University
https://orcid.org/0000-0002-0797-3687
e-mail: kipz_kno@ztu.edu.ua
LYSOGOR IURII

Zhytomyr Polytechnic State University
https://orcid.org/0000-0003-1194-2813
e-mail; lysogor@ztu.edu.ua

RESEARCH OF THE PRINCIPLES OF BUILDING AND DESIGNING A PLATFORM
FOR SHARING VIDEO CONTENT

A video content sharing platform can only function effectively if it is designed to meet the diverse needs of users and the
specifics of video playback synchronization. The features of such platforms include, in particular, providing simultaneous access
to content to several users located in different geographical locations with minimal delay. In addition, interactive user interaction
via text and voice chats is important, creating a virtual space for sharing media content. These user needs form the main
requirements for the technical solution, including high bandwidth of the data transmission channel, efficient request processing,
integration of the interface with the ability to manage rooms and access rights to video playback. The article proposes the
development of a platform for sharing video content, which is characterized by such features as continuous playback
synchronization, integration of text and voice chat, and the ability to manage access rights to video content. When developing the
platform, special attention was paid to the use of modern technologies, namely, the client-server architecture, JavaScript libraries
Express and React together with the Vite tool, MongoDB database, as well as WebSocket and WebRTC protocols that minimize
delays and ensure the smooth operation of the system were chosen to build and implement the system. The WebSocket protocol
synchronizes the actions of all participants in the room, including video and messaging. The WebRTC protocol is used to organize
voice communication between participants, which makes the interaction between users even more dynamic and realistic. As a
result, an effective web application for organizing joint viewing of video content was created, which significantly increased the
level of user interaction and provided maximum comfort during viewing, which was proven during various types of testing,
including load testing using the JMeter tool.

Keywords: web platform, video content, interactivity, WebSocket, WebRTC.

KOCTIOUEHKO APTEM, JIOKTIKOBA TAMAPA, KYILIHIP HAJIL1, TUCOTOP HOPIIA

JepsxaBHuit yHiBepcuTeT « KUTOMUPCHKA MOMITEXHIKa

JOCJIKEHHS MPUHIOUIIIB IOBYJOBU TA MPOEKTYBAHHSA NVIAT®OPMMU JJIA CIIIVIBHOT'O
HEPETJIAAY BIJEOKOHTEHTY

Egexmusne ¢ynxyionysanna niamepopmu 0ns 0OMIiHY 8i0€OKOHMEHMOM MOXMCIUGe Juuie 3a YMO8U 6paxy8awHs npu il po3pobyi
Ppi3HOManiMHUX nompe6 Kopucniyeauie ma cneyuixu cunxpomuizayii giomeopenns ioeo. [Jo ocobaugocmeil makux niam@opm, 30Kkpema,
HANeAHCUMb HAOAHHA OOHOYACHO20 O00CHIYNY 00 KOHMEHMY KilbKOM KOPUCIMYBAYaM, AKI 3HAXOOAMbCA 6 PISHUX 2e02pa(iuHuX mMouKax, 3
Minimanvroio 3ampumxoio. Kpim mozo, easicnugoio € inmepaxmusna 63a€mMo0is KOpUCmyeayis 3a 00NoMo2010 MeKCmosux i 2010CO8UX HAMIB, U0
CMBOPIOE GIPMYanbHull NPOCMIp Os 0OMiny mediakonmenmom. Lfi nompebu xopucmysauie hopmylons 0CHOGHI BUMO2U 00 MEXHIYHO20 PilLeHHs,
BKIIOUAIOYU BUCOKY NPONYCKHY 30AMHICMb KAHALy nepeoayi Oanux, egexmusny obpoOKy sanumis, inmezpayiio inmepgeicy 3 MOAICIUBICHIO
VYNPAasiHHs KIMHAMamu ma npagamu 00cmyny 00 6i0meopeHHs 8ideo. Y cmammi nponoHyemoscs po3pooka niam@opmu 0 CRilbHO20 nepeziioy
8I0€0KOHMEHMY, AKA XAPAKMEPUIYEMbCA MAKUMU MONCTUBOCIAMU AK Oe3nepepena CUHXPOHI3ayis 6i0Meopenis, inmeapayis MeKcmogozo ma
20710C06020 HaMY, A MAKOHC MOHCIUGICING YNPAGIIHHA npasamu docmyny 00 gioeokonmenny. Ilpu pospobyi niamgopmu ocobnusy yeazy 6yno
NpUOieHo BUKOPUCIANHIO CYYACHUX MEeXHON0z2il, a came O nody0osu ma peanizayii cucmemu 6y10 06paHo KIicHm-cepeepny apXimexmypy,
JavaScript-6ioariomexu Express ma React cninoro 3 incmpymenmom Vite, CYBJ] MongoDB, a maxodic npomoxonu WebSocket ma WebRTC, sixi
MIHIMIZYIOMb 3ampumKy ma 3abesneuyioms Oesnepediine @ynkyionysannsn cucmemu. IIpomoxon WebSocket cunxpouizye Oii’ 6cix yuacnuxie
KiMuamu, exniouaiouu oomin ioeo ma nogioomnenuamu. Ipomoxon WebRTC euxopucmosgyemocs 0 opeanizayii 2010c06020 363Ky Midic
yuacrukamu, wjo pooumb 63aemMo0ii0 Midie KOpUCMY8adamt we 6i1but OUHAMIYHOIO ma peanicmuuHoio. Y pesynomami cmeopeno egpekmushuil 6e6-
3acmocyHoK 05l opeanizayii CninbHoeo nepeenady 6i0eOKOHMEHMY, Wo 3HAYHO NIOGUUE PIGeHb 63acMOOii Kopucmyeauie ma 3abe3neyus
MakcumanbHuil Komghopm nio uac nepeaiady, wjo 6yio 008e0eHo nio 4ac nPo8edeHO20 MeCMySAaHHs Pi3HO20 8UOY, BKIIOUAIOYU HABAHMAICYBAIbHE
3a donomoeoro incmpymenmy JMeter.

Kniouosi crosa: ee6-niamgopma, gioeokonmenm, inmepaxmugnicmo, WebSocket, WebRTC.

Problem statement
Modern digital platforms play a key role in ensuring communication, consuming entertainment content, and
creating social connections. Video sharing has become a popular element of social interaction, which is actively
developing due to the rapid growth of online services such as streaming platforms and video conferencing services.

118 Herald of Khmelnytskyi national university, Issue 6, Part 1, 2024 (337)

https://orcid.org/0009-0000-7606-042X
mailto:ipzm241_kav@student.ztu.edu.ua
https://orcid.org/0000-0002-3525-0179
https://orcid.org/0000-0002-3525-0179
mailto:dfikt_ltn@ztu.edu.ua
https://orcid.org/0000-0002-0797-3687
mailto:kipz_kno@ztu.edu.ua
https://orcid.org/0000-0003-1194-2813
https://orcid.org/0000-0003-1194-2813
mailto:lysogor@ztu.edu.ua

TexHiuHi HayKu ISSN 2307-5732

One of the barriers to this trend is the problem of synchronizing the playback of video content for users in
different geographical and technical conditions. Differences in Internet connection speeds, delays in data transmission,
and different technical capabilities of devices lead to uneven playback, which affects the quality of shared viewing.

There are already platforms that allow users to watch video content together, but these platforms do not
sufficiently integrate tools for active interaction among participants. Limitations in the forms of communication, such
as insufficient integration of chats and other real-time responses, make it difficult to create a fully interactive
environment.

A significant part of the challenges associated with the development of video content sharing platforms
relates to ensuring stable and continuous interaction between users in a global network. The issues of system scalability
and its ability to support a large number of simultaneous connections without compromising the quality of service
remain relevant.

The problems of personalizing interaction and managing access rights also pose a significant challenge that
remains insufficiently addressed by modern platforms. The need to accommodate different types of audiences and
user scenarios emphasizes the importance of developing flexible architectures that allow users to tailor the interaction
process to their needs while ensuring stable content synchronization for all participants.

Analysis of research and publications

Among the most well-known similar platforms are Netflix Party, Watch2Gether, and Scener. Each of them
offers unique features and functionality, but also has limitations. Reviewing and analyzing these platforms will help
identify their advantages and disadvantages, as well as the needs of users who remain unsatisfied with existing
solutions, which, in turn, will create the basis for developing a new platform that meets modern requirements and user
expectations.

Netflix Party [1], more recently known as Teleparty, is one of the first platforms that allows users to watch
content on Netflix together. Launched in 2020, it quickly gained popularity in the context of the global increase in
requests for remote viewing of movies and TV shows during the COVID-19 pandemic. Teleparty provides the ability
to synchronize video playback between users, allowing all participants to watch the same content at the same time,
regardless of geographic location.

However, despite its popularity, Teleparty has limitations. First, it only works with Netflix content, which
limits the choice of video content to watch. Secondly, the platform does not offer interactivity features such as video
chat or other elements that would facilitate deeper social interaction between users.

Watch2Gether [2] is an online platform that allows users to watch videos from various sources, such as
YouTube, Vimeo, Dailymotion, and others, together. Launched in 2010, the platform is notable for its ease of use and
versatility, as it is not limited to just one video streaming service. Users can create private or public viewing rooms,
invite friends, and share login links, making it convenient for organizing joint viewing.

Despite its many advantages, Watch2Gether has limitations. First, the platform does not support all streaming
services, which can limit the choice of content for users. Although it offers the ability to watch from multiple sources,
some popular services, such as Netflix or Disney+, are not integrated into the system. Secondly, the platform does not
provide the ability to watch movies or TV series, as this requires appropriate licenses, which may reduce interest in
using the platform.

Scener [3] is an online platform that allows users to watch movies and TV shows together in real time.
Launched in 2019, Scener offers a unique experience by combining elements of social viewing with interactive
features. Users can create “virtual rooms” for viewing by inviting friends to participate through links or social
networks.

One of the main advantages of Scener is the ability to integrate with popular streaming services such as
Netflix, Hulu, and Disney+, which makes Scener a convenient choice for sharing current movies and TV shows. The
platform also offers integrated video chat, which allows users to communicate in real time, increasing the level of
social interaction while watching.

However, despite its advantages, Scener has certain limitations. First, the platform depends on the availability
of subscriptions to the relevant streaming services, which may limit access to content for some users. Secondly,
integration with video chat can create technical problems, such as delays or deterioration in image quality, which can
affect the overall viewing experience.

After analyzing existing platforms, we can formulate a number of features that need to be implemented in
the newly created platform to meet the needs of users that were not fully covered by existing solutions:

1. Introduce a subscription model to provide access to a wide range of video content. This approach will
allow users to watch a variety of video content without having to search for it on different platforms.

2. Integration of text and voice chats to increase the level of social interaction while watching.

3. Playback access control functionality. Giving users the ability to control access rights for other participants
will create a more secure and manageable viewing environment.

4. Ensure minimal delay in data transmission.

5. Ability to change video content for viewing without the need to recreate the room.

Formulating the objectives of the article
The purpose of the study is to investigate the development of a platform for sharing video content that will
meet modern user requirements, taking into account the limitations of existing solutions.

BicHuk XMeabHUYbK020 HaYioHa/1bHO20 yHigepcumemy, Ne6, T.1, 2024 (337) 119

Technical sciences ISSN 2307-5732

Summary of the main material

The first stage of any platform development is the choice of architecture, as this choice determines the overall
efficiency, reliability, and scalability of the future software product. The choice of an architectural solution becomes
key to ensuring optimal resource utilization and maintaining stable system operation under high loads.

Among the available architectural approaches, the client-server architecture [4] deserves special attention, as
it is one of the most common solutions in the context of web application development. It provides a clear division of
functions between the client and server parts, which allows for a high level of flexibility and scalability. In addition,
this architectural approach supports modularity and simplifies the process of deploying and maintaining the system.

A scientific analysis of various architectural approaches shows that the client-server model provides efficient
distribution of computing loads, supports various data transfer protocols, and reduces delays in the exchange of
information between clients and the server. Based on this, the client-server architecture was chosen to build the
platform.

The development of the system's functional structure is the next stage of software development. At this stage,
the system is detailed by identifying the main functional elements and defining the interaction between them in
accordance with the project requirements.

Fig. 1 shows a diagram of the options for using the developed platform with three user roles: User, Room
Owner and Administrator.

View your personal profile, Reset
yourp P password
<<mc|ude>> <<exiend>> [
Leave a rating
<<include=> ¢
s

.
Registration and login re <<|nc|ude>> yy Leave a review

Watch video content T
Browse actors and directors
Edit personal data

Control playback
Room owner

Fig. 1. Diagram of options for using the platform

User Administrator

After determining the use cases and functional interaction of users with the system, the internal structure of
the server part is designed. The server part of the system is implemented as a REST API application [5].

As a description of the structure of the server part, a class diagram was built, which clearly displays the key
components of the system and their interconnections.

Figure 2 shows a diagram of the classes of the server side of the platform.

One of the most important decisions in the architecture of any modern software system is the choice of a
database management system (DBMS). The efficiency of data storage, retrieval, and processing, and thus the overall
system performance, depends on its successful choice. For the proposed platform, we have chosen a document-
oriented DBMS - MongoDB [6]. This choice was made due to a number of advantages of this system, including high
flexibility of the data schema, horizontal scalability, and the ability to efficiently process large amounts of unstructured
data.

The platform's database has a modular structure consisting of 15 separate collections, each of which is
responsible for storing a certain type of data:

. Actor - a collection that stores information about actors, their biographies and filmographies.

. VideoContent - a collection that contains data about video content.

. Country - a collection that stores information about countries.

. Director - a collection containing information about directors and their works.

. Genre - a collection that stores data on the genres of video content, which allows you to classify materials

OB wWwN -

by topic.

[op]

. List - a collection containing information about lists of video content.

7. Message - a collection that stores messages that are sent within rooms, providing communication between
users.

8. Part - a collection containing data about parts of video content.

9. Rating - a collection that stores information about the ratings of video content rated by users.

120 Herald of Khmelnytskyi national university, Issue 6, Part 1, 2024 (337)

TexHIvHI HaQyKU

ISSN 2307-5732

10. Review - a collection containing user reviews.
11. Room - a collection that stores information about the rooms in which video content is viewed.

12. Selection - a collection that contains data on content selections that can be recommended to users.

13. Token - a collection that stores information about tokens for password recovery.

14. TypeContent - a collection that contains information about the types of video content, which allows you

to classify it by format.

15. User - a collection that stores data about system users.

User

Director

Actor

- googleld: string

- isAdmin: boolean

- nickname: string

- email: string

- password: string

- avatarColor: string

- avatarURL: string

- sex: string

- country: Objectld

- likes: number

- dislikes: number

- favorites: List<Objectld>

- lastLogin: Date

- roomld: string

- numberCreatedRooms: number
- numberVisitedRooms: number

- subscription: string

- firstName: string

- lastName: string

- firstNameEng: string
- lastNameEng: string
- photoURL: string

- dateBirth: Date

- dateDeath: Date

- sex: string

- placeBirth: string

- age: number

- firstName: string

- lastName: string

- firstNameEng: string
- lastNameEng: string
- photoURL: string

- dateBirth; Date

- dateDeath: Date

- sex: string

- placeBirth: string

- age: number

+ createDirector(req: Request, res: Respanse): Response

+ getDirector(req: Request, res: Response): Response

+ getDirectorByFullName(req: Request, res: Response): Response
+ updateDirector(req: Request, res: Response): Response

+ deleteDirector(req: Request, res: Response): Response

+ getDirectors(req: Request, res: Response): Response

+ createActor(req: Request, res: Response): Response

+ getActor(req: Request, res: Response): Response

+ getActorByFullName(req: Request, res: Response): Response
+ updateActor(req: Request, res: Response): Response

+ deleteActor(req: Request, res: Response): Response

+ getActors(req: Reguest, res: Response): Response

+ register(req: Request, res: Response): Response

+ login(req: Request, res: Response): Response

+ updateMe(req: Request, res: Response): Response

+ updatePassword(req: Request, res: Response): Response

+ getUserlnfoByUserld(req: Request, res: Response): Response
+ getMyReviews(req: Request, res: Response): Response

+ logout(req: Request, res: Response): Response

+ getMe(req: Request, res: Response): Response

+ reqPasswordResel(req; Request, res: Response); Respanse

+ resetPassword(req: Request, res: Response): Response

VideoContent

Room

Country

- name: string
- originName: siring

- icon: string

+ createCountry(req: Request, res: Response): Response
+ getCountry(req: Request, res: Response): Response

+ updateCountry(req: Request, res: Response). Response
+ deleteCountry(req: Request, res: Response): Response

+ getCountries(req: Request, res: Response): Response

TypeContent

- title: string

- originTitle: baclean

- typeVideoContent: Objectld
- IMDb: number

- description: string
-releaseDate: Date

- duration: string

- previewURL: string

- backgroundURL: string

- trailerURL: string

- originCountrigs: List<Objectld>
- genres: List<Objectid>

- actors: List<Objectld>

- directors: List<Objectld>

- lists: List<Object>

- part: Objectld

- reviews: List<Object|d>

- soundTracks: List<Object>
- seasons: List<Object>

- views: number

- ownerld: Object/d

- videoContentld: Objectld

- inviteCode: string

- title: string

- isPublic: boolean

- maxNumberUsers: number
- password: string

- voiceChat: boolean

- users: List<Objectld>

- invitedUsers: List<Objectld>

+ createRoom(req: Request, res: Response): Response

+ getRoom(req: Request, res: Response): Response

+ updateRoom(req: Reguest, res: Response): Response

+ deleteRoom(req: Request, res: Response): Response

+ getRoomBylnviteCode(req; Request, res: Response); Response

+ inviteUser(req: Request, res: Response): Response

Rating

- name: string
- path: string

- isSeries: boolean

+ createTypeContent{req: Request, res: Response): Response

+ getTypeContent(req: Request, res: Response): Response

+ createVideoContent(req: Request, res: Response): Response
+ getVideoContent{req: Request, res: Response): Response

+ getVideoContentByCriginTitle(req: Request, res: Response): R

- videoContentld: Objectld
- userld: Objectld

- rate: Number

+ rateVideoContent(req: Request, res: Response): Response

+ getRateByVideoContent{req: Request, res: Response): Response

+ UpdateVideoContent(req: Request, res: Response): Respohse
+ deleteVideoContent(req: Request, res: Response): Response

+ getVideoContents(req: Request, res: Response): Response

Genre

- name: string

- originName: string

+ updateTypeContent{req: Request, res: Response): R

+ deleteTypeContent(req: Request, res: Response): R

List

+ getTypesContent(req: Request, res: Response): Response

- name: string

Selection

- name: string
- previewURL: string
- description: string

- videoContents: List<Objectid>

+ createList{req: Request, res: Response): Response
+ getlist{req: Request, res: Response): Response

+ updatelist(req: Request, res: Response): Response
+ deleteList(req: Reguest, res: Response): Response

+ getlists(req: Request, res: Response): Response

+ createGenre(req: Request, res: Response): Response
+ getGenre(req: Request, res: Response): Response

+ updateGenre(req: Request, res: Response): Respanse
+ deleteGenre(req: Request, res: Response): Response

+ getGenres(req: Request, res: Response): Response

Part

+ createSelection(req: Request, res: Response): Response
+ getSelection(req: Request, res: Response): Response

+ updateSelection(req: Request, res: Response): Response
+ deleteSelection(req: Request, res: Response): Response

+ getSelections(req: Request, res: Response): Response

Fig. 2. Diagram of platform classes

- name: string

+ createPart(req: Request, res: Response): Response
+ getPart{req: Request, res: Response): Response

+ updatePart{req: Request, res: Response): Respanse
+ deletePart(req: Request, res: Response): Response

+ getParts(req: Reguest, res: Response): Response

BicHuk XMeabHUYbK020 HaYioHa/1bHO20 yHigepcumemy, Ne6, T.1, 2024 (337) 121

Technical sciences ISSN 2307-5732

Real-time user interaction is based on the use of WebSocket [7] and WebRTC [8] protocols. The WebSocket
protocol provides efficient two-way communication between clients, allowing for instant exchange of text messages
and metadata. To simplify development and increase reliability, the system uses the Socket.IO library [9], which
provides an abstraction over the WebSocket protocol.

The WebSocket protocol is also used to organize synchronous playback of video content. The server uses
WebSocket to transmit updates on the playback status (play, pause, search) to all connected clients, thus ensuring
consistent playback for all session participants.

The WebRTC protocol is used to implement voice chat and video conferencing. This protocol allows you to
establish peer-to-peer connections between clients, providing low latency and high quality audio and video data
transmission. The use of the WebRTC and WebSocket protocols is a comprehensive solution for the implementation
of interactive functions in the system.

The next stage of the platform development was the implementation of the client side, which provides direct
user interaction with the system. The key element of the client part is a user interface designed to visualize data
received from the server part and provide intuitive control of the system's functionality.

The technology stack of the platform's client side is based on the popular JavaScript library React [10]. The
component-based approach of React.js ensures modularity and code reuse, which contributes to the creation of
scalable and efficient interfaces. Reactive updating of component state ensures smooth and intuitive user interaction
with the system.

The Vite tool [11] was chosen to optimize the development process and improve application performance.

The final stage of the platform development was the deployment of its components on cloud platforms.

The client side is hosted on the Netlify platform [12]. This platform was chosen due to its powerful
capabilities for deploying static websites and web applications. Automation of deployment processes, integration with
version control systems, and support for CI/CD processes ensured rapid release of updates and high reliability of the
client part of the developed system.

The server part is deployed on the Vercel platform [13]. This platform, specializing in server applications,
provided high performance and rapid scaling of computing resources. Optimization of the content release provided by
Vercel had a positive impact on the overall user experience.

An additional stage in the development of the web platform was comprehensive performance testing, which
included load testing using the Apache JMeter tool [14], which allowed us to determine the platform's ability to handle
different levels of user load, assess its resistance to high peak loads, and identify potential bottlenecks in the system
architecture.

Fig. 3 shows the interface of the main page of the developed platform. This page serves as an entry point for
authorized users, providing access to the main functions and capabilities of the system. The interface is designed
taking into account the principles of usability [15], which allows users to easily navigate and perform the necessary
actions without any difficulties.

@ MOVIE PARTY P Nigbipn @ 36epexere (% riomyx wtneasie, copiarin vome.-

OcTaHHi 3 Hac

Monii cepiany "OcranHi 3 Hac™ (The Last of Us), arigHo a

CIOXETOM OAHOAMEHHOT rpy BinGysaloThes 8 2033 poll, Yepea
0BaAUSATL POKIB NICNS enanaxy pyiHiBHOT rpuBKosol -
nawuaemil, aka aapasuna 1a Bbuna GiNbUWicTs HacenepHs

[8.7 « 2023 | 40 xa | Gantactvxa &
N
W

Fig. 3. The main page of the platform

122 Herald of Khmelnytskyi national university, Issue 6, Part 1, 2024 (337)

TexHiuHi HayKu ISSN 2307-5732

Fig. 4 shows the interface of a virtual room designed to ensure effective communication between users while
watching video content together. The room interface includes text and voice chat functionality that allows participants
to exchange messages in real time.

G MOVIEPARTY @t ® sovs %

(O] a

HiArtem

1
1)

1\

% Artem Kostuchenko &,

5 000415/012052) @ B [2
% Artem Kostuchenko
B Watch FAF 3

Topil cepiany "OcTanni 3 Hac” (The Last of Us), 3riaHO 3 CIOKETOM OJHORMEHHO! TP BA6YBAIOTLCS B 2033 POLi, 4epe ABaAUATS POKIB NICNR cnanaxy PyANIBHO| rPUGKORO
MR E alky niofe,

o
XTO BIDKUB, | MyLLIGHI NPWAMATY BEXXI PILIGHHA, SIKi BITAKYTH HA PESYNBTAT ICTOPIl

O6paHuit KOHTEHT ANA Nepernagy:

Fig. 4. The virtual room page

Conclusions

The study examined the principles of building and designing a video content sharing platform that takes into
account modern requirements for interactivity, flexibility, and scalability. The analyzed existing similar solutions -
Netflix Party, Watch2Gether, and Scener - showed their limitations in the ability to synchronize content, communicate
between users, and control access to playback functions. The proposed platform solves these problems by introducing
innovations such as the use of WebSocket and WebRTC protocols to provide synchronization and voice chat,
respectively, which ensured minimal delays in user interaction.

The use of the MongoDB database with a flexible collection structure allowed us to optimize the storage of
large amounts of data and ensure the efficient operation of the system. The implementation of the client side based on
the React JavaScript library using the Vite tool and the deployment of the platform on Netlify and Vercel cloud
services ensured high performance and reliability of the system.

Prospects for further research in this area will focus on expanding the platform's functionality by integrating
new means of communication, such as video chats, and introducing artificial intelligence to personalize content
according to user preferences. Another important area of focus will be optimizing the system to handle even higher
loads, which will allow for simultaneous interaction of thousands of users while maintaining high quality of the stream.

References

1. Netflix Party (Teleparty) [Electronic resource] — Resource access mode: https://www.teleparty.com/.
2. Watch2Gether Product Documentation [Electronic resource] - Resource access mode:
https://community.w2g.tv/t/how-to-use-watch2gether/736.
. Scener [Electronic resource] — Resource access mode: https://www.scener.com/.
. Client Server Architecture A Complete Guide - 2020 Edition, 2020. — 218 p.
. Amundsen M. RESTful Web APIs: Services for a Changing World / Amundsen., 2013. — 406 p.
. Banker K. MongoDB in action / Kyle Banker. — New York, 2011. — 312 p.
. Lombardi A. WebSocket: Lightweight Client-Server Communications / Andrew Lombardi., 2015. — 141 p.
. Ristic D. Learning WebRTC / Dan Ristic., 2015. — 186 c.
. Sidelnikov G. React.js Book: Learning React JavaScript Library From Scratch / Greg Sidelnikov., 2017.

O©oo~NO O Ww

—117 p.

10. Rai R. Socket.10 Real-Time Web Application Development / Rohit Rai., 2013. — 140 p.

11. Vite | Next Generation Frontend Tooling [Electronic resource] — Resource access mode: https://vite.dev/.

12. Vercel: Build and deploy the best web experiences with the Frontend Cloud [Electronic resource] —
Resource access mode: https://vercel.com/.

13. Netlify: Scale & Ship Faster with a Composable Web Architecture [Electronic resource] — Resource
access mode: https://www.netlify.com/.

14. Erinle B. Performance Testing with JMeter 3 / Bayo Erinle., 2017. — 166 p.

15. Tidwell J. Designing Interfaces: Patterns for Effective Interaction Design / J. Tidwell, C. Brewer, A.
Valencia., 2020. — 599 p.

BicHuk XMeabHUYbK020 HaYioHa/1bHO20 yHigepcumemy, Ne6, T.1, 2024 (337) 123

https://www.teleparty.com/
https://community.w2g.tv/t/how-to-use-watch2gether/736
https://www.scener.com/
https://vite.dev/
https://vercel.com/
https://www.netlify.com/

