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EXPLORING THE LIMITS OF MCTS IN PAC-MAN: MAZE SIZE, SIMULATIONS, 

AND PERFORMANCE 
 

This paper explores the performance and limitations of Monte Carlo Tree Search (MCTS) when applied to the Pac-Man 

game, with a particular focus on how maze complexity and the number of simulations affect the agent’s decision-making process. 

The game serves as a dynamic environment where the MCTS agent must navigate mazes filled with rewards (capsules and food) and 

avoid adversarial agents (ghosts), creating a challenging testbed for decision-making algorithms. 

The primary objective of this work is to assess the efficiency of MCTS across mazes of varying sizes and configurations, 

from small, optimized layouts to large, non-optimized ones. We aim to understand the trade-offs between computational resources 

(e.g., number of simulations) and the agent's overall performance, particularly in terms of score, win rate, and decision-making time. 

The experiments were conducted using different numbers of simulations per move, allowing the MCTS agent to build decision trees 

that guide its actions. This enabled us to observe how performance metrics evolve as the complexity of the environment increases. 

The findings indicate that MCTS performs effectively in smaller, optimized mazes where paths are clearer, and the decision 

space is more manageable. However, as maze complexity grows—particularly in non-optimized environments filled with obstacles 

and unpredictable paths—the agent's performance deteriorates. A key insight is that increasing the number of simulations does 

improve decision quality to an extent, but only up to a point; beyond that, additional simulations incur a computational overhead 

that does not yield proportional gains in performance. Moreover, the experiments reveal that optimized maze designs allow the 

MCTS agent to make more informed and efficient decisions, while non-optimized mazes exacerbate the agent’s struggle with 

unpredictability and more complex decision spaces. These findings underscore the limitations of MCTS in handling dynamic and 

irregular environments. 

Key conclusions include the necessity of enhancing MCTS for complex scenarios by incorporating more advanced heuristic 

functions to evaluate game states more accurately, along with adaptive simulation strategies to better manage computational 

resources. Additionally, combining MCTS with reinforcement learning or neural networks could offer more robust solutions for 

tackling the growing complexity of both in-game and real-world environments. This research highlights several promising avenues 

for future exploration, particularly in applying MCTS to more intricate AI challenges such as autonomous navigation and real-time 

decision-making in robotics. 
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ДОСЛІДЖЕННЯ МЕЖ MCTS У PAC-MAN: РОЗМІР ЛАБІРИНТУ, СИМУЛЯЦІЇ ТА ПРОДУКТИВНІСТЬ 

 

Ця стаття досліджує продуктивність та обмеження алгоритму пошуку дерева Монте-Карло (MCTS) у грі Pac-Man, особливо 
звертаючи увагу на вплив складності лабіринту та кількості симуляцій на процес ухвалення рішень. Основною метою роботи є оцінка 

ефективності MCTS в умовах різних за розміром та конфігурацією лабіринтів, з аналізом компромісів між обчислювальною вартістю та 

результативністю агента. Дослідження показали, що MCTS добре працює в малих та оптимізованих лабіринтах, але його продуктивність 

значно знижується у великих і неструктурованих середовищах. Пропонується покращити алгоритм шляхом застосування адаптивних 

симуляцій та комбінування MCTS з іншими методами штучного інтелекту. 

Ключові слова: мктс, пакман, складність лабіринту, прийняття рішень, ші агенти, моделювання 

 

Problem Statement 

In dynamic environments, decision-making agents must navigate complex scenarios with multiple adversaries, 

changing conditions, and limited information. The Pac-Man game, with its combination of adversarial ghosts, rewards, 

and penalties, serves as an ideal testbed for exploring the performance of decision-making algorithms. Monte Carlo 

Tree Search (MCTS), a widely used algorithm for making decisions under uncertainty, has shown promise in various 

AI applications but presents challenges in environments with increasing complexity and size. 

One of the main challenges in deploying MCTS effectively is balancing exploration (searching for new 

strategies) and exploitation (using known successful strategies) while maintaining computational efficiency. 

Additionally, the performance of MCTS can degrade in larger, more complex environments due to the increasing 

number of potential states and actions. 

The main goal of this paper is to evaluate the efficiency and performance of an MCTS agent in Pac-Man mazes 

of varying complexity and size, analyzing the impact of increasing the number of simulations and exploring how 

different maze configurations affect the agent's decision-making capabilities. Through these experiments, we aim to 
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identify scalability issues and propose potential improvements to enhance the MCTS algorithm's performance in 

complex environments. 

Analysis of Recent Sources 

In recent years, Monte Carlo Tree Search (MCTS) has gained significant traction in the field of artificial 

intelligence (AI), particularly for solving decision-making problems under uncertainty. Originally introduced in the 

domain of game playing, MCTS has been employed in a variety of complex environments where agents must explore 

vast decision spaces efficiently. One of its most notable applications has been in the game of Go, where MCTS, 

combined with deep neural networks, led to breakthroughs such as the development of AlphaGo. The strength of MCTS 

lies in its ability to balance exploration and exploitation by conducting numerous simulations to evaluate potential future 

states before making a decision. 

In their research, Ou et al. conducted a comprehensive survey on the theories and applications of MCTS. They 

highlighted its growing success in decision-making scenarios like Go but also pointed out the ongoing challenges in 

real-time applications with imperfect information. Their work emphasizes the need for further development to extend 

MCTS to broader, more dynamic environments [1]. 

Similarly, in a study by Jiang, the success of MCTS in the game of Go is further exemplified through its 

integration with deep learning techniques in AlphaGo. Jiang's research demonstrates how MCTS, in combination with 

deep neural networks, significantly advanced the AI's ability to manage large decision spaces, surpassing traditional 

brute-force methods and even outperforming human players in one of the most complex board games in the world [2]. 

In another important study, Steinmetz and Gini explored the impact of parallelizing MCTS for more time-

constrained scenarios. Their research focused on comparing various parallelization techniques, including root 

parallelization, where multiple independent trees are built simultaneously. Their findings showed that root 

parallelization provides better performance improvements under limited time constraints compared to other methods. 

This study offers valuable insights into optimizing MCTS for situations where time is a critical factor [3]. 

Overall, these studies illustrate the versatility and power of MCTS while also addressing its limitations, 

particularly in real-time and imperfect information scenarios. The continued research and optimization of MCTS, 

particularly through parallelization and integration with deep learning, hold promise for expanding its applicability 

beyond game environments and into more complex, real-world decision-making systems. 

In the context of the Pac-Man game, MCTS offers an interesting opportunity to study decision-making under 

dynamic adversarial conditions. Pac-Man’s environment features elements such as moving adversaries (ghosts), static 

and dynamic rewards (food and capsules), and the challenge of navigating complex mazes. These characteristics make 

Pac-Man a perfect testbed for analyzing how decision-making algorithms, like MCTS, cope with uncertainty and 

complexity. 

In their research, Pepels et al. explored the application of MCTS for controlling the Pac-Man character in the 

real-time game Ms. Pac-Man. They introduced several enhancements to adapt MCTS to this fast-paced environment, 

where decisions must be made within a strict 40 ms time limit. Their work highlighted key modifications, such as 

implementing a variable-depth tree, incorporating simulation strategies for both Pac-Man and the ghost teams, and 

reusing the search tree with a decay factor. These changes significantly improved the agent's ability to navigate the 

game by balancing survival and maximizing points, even when facing diverse ghost behaviors [4]. 

Further enhancing the capabilities of MCTS in the Pac-Man game, Nguyen and Thawonmas developed an 

MCTS-based strategy for controlling ghost teams. They combined rule-based control with MCTS to improve 

coordination among ghosts, enhancing their ability to predict Pac-Man’s movements. Their approach led to significant 

improvements in the ghosts' performance, as demonstrated by their success in winning competitions against other ghost 

teams [5]. 

Another study by Liu et al. demonstrated the effectiveness of using MCTS in combination with an artificial 

neural network (ANN) to control non-player characters (NPCs) in Pac-Man. The researchers showed how integrating 

ANN with MCTS reduced computational load, allowing for more efficient decision-making processes while 

maintaining competitive performance. This combination of MCTS and ANN proved successful in controlling both Pac-

Man and the ghost teams, offering a robust approach to developing intelligent game opponents [6]. 

Beyond Pac-Man, the relevance of decision-making in dynamic environments extends to a range of real-world 

applications. In particular, 2D terrains in robotics and drone navigation often resemble the maze-like environments of 

Pac-Man. In these cases, agents (e.g., drones or robots) must traverse a complex space while avoiding obstacles 

(analogous to ghosts) and completing specific tasks (similar to eating capsules or food). The vulnerability of drones to 

certain threats—represented by the ghosts' scared state in the game—mirrors real-world scenarios where agents may be 

temporarily neutralized by external factors such as signal jamming or environmental conditions. For example, Bartolini 

et al. explored scenarios where drones inspect areas under uncertainty about the time and location of target events, 

building dynamic probabilistic maps for trajectory planning and collision avoidance [7]. This approach highlights the 

complexity and unpredictability drones face in real-world missions, much like Pac-Man navigating mazes under ghost 

threat. 

Additional research by Pairet et al. addressed online motion planning under uncertainty, focusing on building 

an uncertainty-aware representation of the environment while ensuring safe navigation. Their method incrementally 

maps the surroundings and replans trajectories in real-time, ensuring drones adapt to unknown and changing 

environments [8]. Similarly, the work by Sandino et al. demonstrated how autonomous drones could efficiently plan 

their paths under detection uncertainty, a challenge that mirrors the unpredictability in Pac-Man's environment [9]. In 
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related research, Thatavarthy et al. tackled urban drone navigation, presenting a system that allows drones to navigate 

amongst high-rises using visual-inertial SLAM maps, further emphasizing the need for robust decision-making 

algorithms in uncertain environments [10]. These studies exemplify how AI models tested in games like Pac-Man can 

be extended to real-world drone navigation challenges, where uncertainty and real-time adaptation are crucial. In 

addition studies on drones and robots navigating uncertain terrains [11, 12] provide valuable insights into handling 

unpredictable environments. 

The decision-making problem itself is a central theme in AI research. Numerous studies have focused on the 

difficulties agents face when making decisions in adversarial environments where other agents are actively working 

against them. Cheraghi et al., for instance, developed algorithms based on Depth First Search (DFS) and Breadth First 

Search (BFS) for autonomous robots to efficiently cover 2D terrains. Their study showed how robot swarms can self-

organize and share data, much like how Pac-Man must navigate while avoiding ghosts that dynamically alter their 

strategies [13]. These challenges are particularly pronounced in the Pac-Man game, where ghosts actively seek out Pac-

Man while the agent must simultaneously focus on maximizing its score. This balancing act between survival and 

optimization mirrors broader problems in AI, such as multi-agent systems where multiple actors with competing 

objectives interact in a shared environment. Similar adversarial dynamics have been explored in the field of multi-agent 

systems, such as in the work by Andreas et al., where adversary decision-making was modeled using Markov models 

to influence outcomes strategically [14].  

Moreover, the dynamic nature of adversarial agents (ghosts) in Pac-Man is akin to real-world problems 

involving mobile threats. In applications like security patrolling or autonomous delivery, adversarial agents (e.g., 

intruders or obstacles) dynamically change positions, requiring decision-making algorithms to adapt in real-time. 

Similar to how ghosts adjust their behavior based on Pac-Man’s location, adversaries in real-world scenarios often adapt 

their tactics in response to external cues. This dynamic decision-making process has been a focus of studies such as 

Deng and Jiang’s work on modeling adversarial decision-making using fuzzy sets, game theory, and D number theory 

to handle conflict and uncertainty [15]. Likewise, Talebi et al. demonstrated how adversaries' decision-making can be 

influenced in complex dynamical systems using game theory and Q-learning techniques [16]. Such real-time 

adaptability and adversarial strategy adjustments are mirrored in Pac-Man’s gameplay, where both Pac-Man and the 

ghosts must constantly reevaluate their tactics as the environment changes. 

Furthermore, Yang and Parasuraman demonstrated how game theory could be used to model multi-agent 

decision-making in adversarial environments, allowing agents to cooperate or compete based on the situation [17]. This 

directly parallels Pac-Man’s adversarial context, where both ghosts and Pac-Man must make strategic decisions based 

on the ever-changing state of the game. Real-world applications like autonomous drone navigation or urban planning 

benefit from similar strategies, where decision-making must balance competition and cooperation while adapting to 

dynamic environments. 

In addition, research on decision-making in adversarial environments [18] shows how agents must adapt strategies based 

on opposing actions, much like Pac-Man adapting to ghost behaviors. 

In conclusion, MCTS offers a versatile framework for solving decision-making problems not only in games 

like Pac-Man but also in more global real-world applications. Whether it is navigating a robot through a hazardous 

terrain or guiding a drone to avoid adversarial agents, the challenges faced by an MCTS agent in Pac-Man can be closely 

tied to these real-world scenarios. By understanding how MCTS interacts with complex environments, such as different 

maze configurations in Pac-Man, we gain valuable insights into the limitations and potential of AI in larger, more 

complex domains. 

Purpose of the Article 

The article aims to achieve the following key objectives to contribute to the understanding of MCTS’s 

applicability in real-world problems involving decision-making under uncertainty: 

 Evaluate the effectiveness of MCTS in different maze configurations, ranging from small to large and 

optimized vs. non-optimized layouts. 

 Analyze the scalability of MCTS when increasing the number of simulations and the resulting trade-offs 

between computational cost and performance. 

 Identify the limitations of MCTS in complex and adversarial environments, particularly in the context of 

dynamic agents like ghosts. 

 Propose potential improvements for enhancing MCTS agent performance in larger, more complex scenarios. 

 

Main Material 

The experiments were conducted using a variety of Pac-Man maze configurations, which play a key role in 

determining the complexity and difficulty faced by the MCTS agent. The goal of the experiments remained consistent: 

Pac-Man must eat all the capsules while avoiding the ghosts. The scoring system and key game mechanics are as 

follows: 

 Time penalty: Pac-Man loses 1 point per move, discouraging inefficient or overly defensive play. 

 Capsule reward: Eating a capsule grants +500 points and temporarily puts ghosts into a vulnerable "scared" 

state. 

 Ghost reward: While in the scared state, Pac-Man can eat ghosts for +200 points per ghost. 

 Food reward: Each food dot eaten grants +10 points. 

 Scared timer: After eating a capsule, ghosts remain vulnerable for 10 moves. 
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The "time" metric used in the results measures the average decision-making time (in seconds) for the MCTS 

agent, separate from the in-game move count. 

A range of maze layouts was used to simulate different levels of complexity and challenge. The mazes were 

designed to test the MCTS agent’s ability to navigate various spatial constraints and adversarial dynamics: 

Small Mazes (7x20): These compact mazes feature narrow corridors and fewer paths, creating simpler 

decision spaces for the agent but less room for error. The small maze configurations are designed with only 2 ghosts—

Blinky and Pinky—creating a focused environment where the agent has to balance immediate threat avoidance and 

capsule collection. Two types of small mazes were used (See Fig. 1): 

1. Optimized Small Maze: Carefully structured with clear paths to the capsules and limited dead ends, allowing 

for more straightforward decision-making. 

2. Non-Optimized Small Maze: Featuring more obstacles and dead ends, this version challenges the agent to 

find efficient routes while navigating complex layouts. 

 
Fig.1 Small Mazes displaying in the game: a) - Optimized Small Maze; b) - Non-Optimized Small Maze 

 

Medium Mazes (11x20): These medium-sized mazes introduce more corridors and junctions, offering multiple 

pathways to the capsules. The agent must consider more strategic routes while balancing ghost avoidance. Two ghost 

agents, Blinky and Pinky, are still used, but their behavior in a more open layout increases the decision space (See Fig. 

2). 

1. Optimized Medium Maze: Structured to offer multiple routes to each capsule, making it easier for Pac-Man 

to escape ghosts while pursuing capsules. 

2. Non-Optimized Medium Maze: Featuring more dead ends and maze complexity, this layout forces the agent 

to make riskier decisions when navigating toward capsules or escaping ghosts. 

 
Fig.2 Medium Mazes displaying in the game: a) - Optimized Medium Maze; b) - Non-Optimized Medium Maze 

 

Large Mazes (27x28): The large mazes represent the most complex environments, featuring multiple intersections, 

long corridors, and more opportunities for the ghosts to corner Pac-Man. These mazes introduce all four ghost agents—

Blinky, Pinky, Inky, and Clyde—creating additional challenges. Larger mazes require the agent to navigate more 

complex paths while tracking the positions of all four ghosts (See Fig. 3). 

1. Optimized Large Maze: The layout offers several escape routes and more strategic pathways to capsules, but 

the larger space gives the ghosts more room to surround Pac-Man. 

2. Non-Optimized Large Maze: With irregular pathways and numerous obstacles, this maze significantly 

increases the difficulty, as the agent must navigate a far more complex environment where ghost behavior 

becomes harder to predict. 

In the larger mazes, the diversity of ghost behaviors makes decision-making more complex. Blinky continues 

to chase Pac-Man directly, Pinky predicts future movements, Inky takes tactical positions based on Pac-Man’s and 

Blinky’s locations, and Clyde introduces an element of randomness, oscillating between chasing Pac-Man and moving 

unpredictably. These factors combine to create a multi-layered challenge, where the agent must make decisions under 

high uncertainty. 
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Fig.3 Large Mazes displaying in the game: a) - Optimized Large Maze; b) - Non-Optimized Large Maze 

 

The four ghost agents each bring unique behavior to the game: 

 Blinky ("Chaser"): Targets Pac-Man’s current location. Blinky’s straightforward strategy provides a 

consistent threat, making him the most immediate danger to Pac-Man at all times. 

 Pinky ("Ambusher"): Anticipates Pac-Man’s future position based on his movement direction. Pinky adds 

complexity by trying to cut off Pac-Man’s escape routes rather than chasing him directly. 

 Inky ("Tactical"): Inky’s behavior is more complex, relying on both Pac-Man’s position and Blinky’s location 

to calculate its movement. Inky’s unpredictability makes it difficult for Pac-Man to predict his future moves. 

 Clyde ("Scatter"): Clyde behaves erratically, switching between chasing Pac-Man and wandering to random 

corners of the maze. His sporadic behavior adds an additional layer of uncertainty, forcing Pac-Man to react to 

both predictable and random threats. 

The combination of these ghosts creates a constantly shifting set of threats, requiring the MCTS agent to 

balance immediate survival with long-term planning. In smaller mazes, the agent has fewer paths to escape, increasing 

the difficulty of managing Blinky’s direct pursuit. In larger mazes, the unpredictability of Inky and Clyde requires the 

agent to adopt more adaptive strategies. 

The experiments were conducted using the aforementioned mazes, with the following key parameters: 

 Maze complexity: Small, medium, and large mazes were used to test how the MCTS agent handles 

environments of increasing complexity. The optimized and non-optimized variants allowed for testing the 

impact of layout design on agent performance. 

 Ghost count: The number of ghosts was varied between 2 (Blinky and Pinky) in small and medium mazes, 

and 4 (Blinky, Pinky, Inky, and Clyde) in large mazes. 

 Simulations: The MCTS agent was tested with varying numbers of simulations, ranging from 101 to 500 per 

decision. Each simulation run builds a tree of possible game states, with more simulations typically improving 

decision quality but increasing computation time. 

 Performance metrics: The performance of the MCTS agent was evaluated based on: 

o Average score: Reflecting how effectively the agent collected food, capsules, and ghosts. 

o Decision-making time: Average computation time per move, indicating the trade-off between 

simulation count and agent speed. 

o Win rate: Percentage of games won out of 100 trials, used to measure the overall effectiveness of the 

agent under each condition. 

Below, the results of the experiments are shown in individual tables for each maze configuration, detailing 

how the MCTS agent performed with different simulation counts. 

The performance of the MCTS agent in this small, optimized maze shows incremental improvements with 

increasing simulations (see Table 1). However, the win rate fluctuates, indicating a limit to the effectiveness of 

additional simulations. 
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Table 1 

Small Maze 1 (Optimized) results 

Number of Simulations Average Score Average Time (sec) Win Rate (%) 

101 585.18 7.59 12 

200 611.07 9.68 13 

300 569.33 11.14 13 

400 569.33 12.99 18 

500 666.89 14.99 17 

 

In the non-optimized small maze (see Table 2), the agent's average score improves with more simulations, but 

the win rate remains low, suggesting the increased complexity of the maze hinders the agent’s ability to capitalize on 

more simulations. 

Table 2 

Small Maze 2 (Non-Optimized results 

Number of Simulations Average Score Average Time (sec) Win Rate (%) 

101 784.41 9.28 9 

200 717.09 10.81 10 

300 732.33 12.98 9 

400 797.49 16.16 7 

500 900.73 21.22 12 

 

In the optimized medium maze (see Table 3), the agent shows a steady improvement in both score and win 

rate, particularly with 500 simulations, where the win rate reaches 41%. The increased complexity of the medium maze 

provides the agent with more opportunities to optimize its path and collect rewards. 

Table 3 

Medium Maze 1 (Optimized) results 

Number of Simulations Average Score Average Time (sec) Win Rate (%) 

101 1093.71 17.95 34 

200 1103.57 23.71 33 

300 1122.53 39.19 34 

400 1126.94 49.39 36 

500 1188.56 60.29 41 

 

In the non-optimized medium maze (see Table 4), the results are more erratic, with both the score and win rate 

remaining low, even as the number of simulations increases. The complexity of the maze hinders the MCTS agent’s 

ability to consistently perform well, indicating that additional simulations are less effective in highly irregular 

environments. 

Table 4 

Medium Maze 2 (Non-Optimized) results 

Number of Simulations Average Score Average Time (sec) Win Rate (%) 

101 766.24 15.31 5 

200 773.37 25.85 6 

300 746.08 24.26 6 

400 813.50 56.12 12 

500 789.85 73.79 9 
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In the large optimized maze (see Table 5), the MCTS agent struggles with increased complexity, achieving 

only marginal improvements in score and win rate, even with more simulations. This highlights the diminishing returns 

in large mazes, where the complexity overwhelms the computational power available to the agent. 

Table 5 

Large Maze 1 (Optimized) results 

Number of Simulations Average Score Average Time (sec) Win Rate (%) 

50 1255.41 36.23 1 

101 1190.48 41.32 2 

200 1369.72 60.83 2 

300 1480.29 91.49 0 

 

In the non-optimized large maze (see Table 6), the agent performs surprisingly well, achieving a high average 

score and win rate. However, starting at 300 simulations, the performance drops significantly, with computation time 

skyrocketing. This suggests that while more simulations initially benefit the agent, too many lead to a performance 

bottleneck, where computational costs outweigh the benefits of additional simulations. 

Table 6 

Large Maze 2 (Non-Optimized) results 

Number of Simulations Average Score Average Time (sec) Win Rate (%) 

50 3109.16 37.12 29 

101 3129.72 49.7 30 

200 3138.23 85.54 32 

300 2836.98 906.89 22 

 

The results of the experiments reveal several key trends: 

1. Maze Size and Complexity Impact: Larger and more complex mazes pose significant challenges to the MCTS 

agent. While the agent performs well in smaller, optimized mazes, it struggles in larger or non-optimized 

environments, where the decision space becomes exponentially more difficult to manage. 

2. Diminishing Returns of Simulations: As the number of simulations increases, there is a point where 

additional simulations fail to improve the agent’s performance. This is particularly evident in large mazes 

where, after 200–300 simulations, the agent's performance plateaus or even declines due to the high 

computational cost (see Table 5 and Table 6). 

3. Optimization vs. Non-Optimization: The optimized mazes tend to provide the MCTS agent with clearer paths 

and fewer dead ends, improving both scores and win rates. In contrast, non-optimized mazes add 

unpredictability and complexity, making it harder for the agent to make effective decisions, especially with 

limited simulations. 

These findings suggest that while MCTS is effective in simpler environments, additional strategies, such as 

better heuristics or hybrid approaches, may be needed to handle more complex mazes efficiently. 

 

Conclusions 

This research has demonstrated the complexities involved in applying Monte Carlo Tree Search (MCTS) to 

Pac-Man, particularly when navigating mazes of varying sizes and levels of complexity. The results have highlighted 

several critical challenges and opportunities for refining the MCTS approach. 

As the mazes grew in size and complexity, the MCTS agent faced increasingly difficult decision spaces. In 

smaller mazes, particularly those designed with optimized paths, the agent navigated efficiently, capitalizing on clearer 

routes to capsules and ghosts. However, the more complex environments—especially those with non-optimized 

layouts—proved far more challenging. The unpredictability and additional obstacles in these mazes pushed the MCTS 

algorithm beyond its capacity to manage decisions effectively with limited computational resources. 

Another important observation from the experiments was the diminishing returns of increasing the number of 

simulations. While more simulations generally led to better decisions in simpler mazes, there was a clear point, 

especially in larger environments, where additional simulations no longer translated into better performance. In fact, the 

computational overhead started to reduce efficiency, underscoring the need for smarter resource management within 

the algorithm. 

The structure of the mazes—whether optimized or non-optimized—played a decisive role in shaping the 

agent’s performance. Optimized mazes allowed the MCTS agent to make more informed and effective decisions, taking 

advantage of less cluttered paths and more predictable patterns. In contrast, non-optimized mazes presented more 

difficult decisions, requiring the agent to constantly adapt to irregular and unpredictable structures. These findings 



 Technical sciences ISSN 2307-5732 
 

Herald of Khmelnytskyi national university,  Issue 5, 2024 (341) 358 

suggest that improvements in both algorithm efficiency and environment design could lead to more robust decision-

making. 

To better equip the MCTS agent for complex environments, several enhancements are necessary. First, 

integrating more advanced heuristics tailored to complex maze navigation could help the agent prioritize key decision 

points more effectively. Adaptive simulation techniques, where the number of simulations is dynamically adjusted based 

on the current state complexity, could also optimize computational effort. Finally, combining MCTS with reinforcement 

learning or neural networks may enable the agent to handle dynamic, adversarial environments more fluidly.  

Further research could explore the application of these findings to larger, more intricate mazes or entirely new 

environments where the principles of MCTS may be useful. Additionally, the potential for hybrid decision-making 

models—integrating MCTS with other AI approaches—presents a promising avenue for developing more versatile and 

adaptive agents, not just for Pac-Man, but for real-world decision-making problems as well. 
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