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FORECASTING ELECTRICITY GENERATION BY PHOTOVOLTAIC PLANTS 

CONSIDERING ECONOMIC AND ORGANIZATIONAL CHANGES 
 
One of the key innovations is the option for renewable energy producers to choose between the "green" tariff and a new 

market premium mechanism. This allows them to receive the difference between the market price and the "green" tariff, increasing 

the flexibility of the support system for renewable energy sources (RES). Additionally, regulations on imbalances and market 

transparency were tightened, as part of legislative changes aimed at stabilizing Ukraine’s energy system. To solve the task of 

forecasting the generation of electricity from unstable energy sources, a range of models was developed using machine learning 

technologies, and the optimal model among them was selected. 

The results showed that the model achieved a high coefficient of determination (R²) of 0.9969 on the training data, 

indicating its precise adaptation to the training data. On the validation data, the model demonstrated a slightly lower R² value of 

0.9925, which indicates its excellent ability to generalize results and work with new, unknown data. 

The graphical interpretation of the forecasting results based on the LightGBM Regressor model for the training, validation, 

and test data. An analysis of the electricity market and the legislative framework regulating the energy market in Ukraine has been 

conducted. The selection of parameters for the creation of a model for predicting electricity generation at solar power plants was 

carried out, better prediction accuracy was achieved by taking cloud cover into account. The impact of Random Forest Regressor 

parameters on the accuracy of electricity generation predictions at solar power plants has been examined. Research results can be 

generalized and used to forecast the generation from any unstable renewable energy sources. 
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ПРОГНОЗУВАННЯ ВИРОБНИЦТВА ЕЛЕКТРОЕНЕРГІЇ ФОТОЕЛЕКТРИЧНИМИ УСТАНОВКАМИ З 

ВРАХУВАННЯМ ЕКОНОМІЧНИХ ТА ОРГАНІЗАЦІЙНИХ ЗМІН 

 
Одним із ключових сучасних нововведень є можливість для виробників ВДЕ обирати між «зеленим» тарифом і новим механізмом 

ринкової премії. Це дозволяє їм отримувати різницю між ринковою ціною та «зеленим» тарифом, підвищуючи гнучкість системи 

підтримки відновлюваних джерел енергії (ВДЕ). Крім того, було посилено регулювання дисбалансів і прозорості ринку в рамках 

законодавчих змін, спрямованих на стабілізацію енергетичної системи України. 

Для вирішення задачі прогнозування вироблення електроенергії з нестабільних джерел енергії розроблено низку моделей з 
використанням технологій машинного навчання, серед яких обрано оптимальну модель. 

Результати показали, що модель досягла високого коефіцієнта визначення (R²) 0,9969 на даних навчання, що вказує на її точну 

адаптацію до даних навчання. За даними перевірки модель продемонструвала трохи нижче значення R² 0,9925, що вказує на її чудову 
здатність узагальнювати результати та працювати з новими, невідомими даними. 

Графічна інтерпретація результатів прогнозування на основі моделі LightGBM Regressor для даних навчання, перевірки та 
тестування. Проведено аналіз ринку електроенергії та законодавчої бази, що регулює енергетичний ринок в Україні. Проведено підбір 

параметрів для створення моделі прогнозування виробництва електроенергії на сонячних електростанціях, досягнуто кращої точності 

прогнозування за рахунок врахування хмарності. Досліджено вплив параметрів Random Forest Regressor на точність прогнозів 
виробництва електроенергії на сонячних електростанціях. Результати досліджень можуть бути узагальнені та використані для 

прогнозування виробництва з будь-яких нестабільних відновлюваних джерел енергії. 

Ключові слова: модель прогнозування, фотоелектростанція, похибка прогнозування, прогноз генерації, аналіз даних 

 

In August 2024, significant changes in the regulation of the electricity market in Ukraine took place, 

particularly regarding the "green" tariff system and imbalance charges [1]. One of the key innovations is the option for 

renewable energy producers to choose between the "green" tariff and a new market premium mechanism. This allows 

them to receive the difference between the market price and the "green" tariff, increasing the flexibility of the support 

system for renewable energy sources (RES). Additionally, regulations on imbalances and market transparency were 

tightened, as part of legislative changes aimed at stabilizing Ukraine’s energy system. 
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Green Tariff and Imbalance Charges: 

The law continues the application of the "green" tariff for electricity producers from renewable sources, such 

as wind and solar power. A notable innovation is the introduction of imbalance charges [2], which will become 

mandatory for producers starting in 2025. This charge will be 100% in cases where the imbalance is within 5%. This 

means that producers will be required to compensate for the cost of electricity that was either not sold or produced 

beyond contracted volumes. 

Incentives to Improve Balancing: 

These changes are aimed at encouraging the producers to balance their generation capacities better and reduce 

supply deviations. This will also help optimize the operation of the energy system and reduce the costs associated with 

maintaining its stability. 

It is important to note that the new regulations may significantly impact investments in renewable energy 

projects, particularly due to the regulation of auctions and the establishment of their new requirements. 

Forecasting electricity generation from renewable energy sources (RES) has several important economic 

aspects that justify its implementation: 

1. Optimization of balancing: Forecasting generation helps reduce balancing costs for the energy system. 

Accurate forecasts allow for the avoidance of significant imbalances, which in turn reduces the need for expensive 

reserve capacity to cover deviations in RES generation. 

2. Risk reduction for investors: Reliable generation forecasts increase investors' confidence in RES projects. 

It reduces financial risks and encourages additional investments, as investors can more accurately assess the profitability 

of the project. 

3. Market stability improvement: Forecasting generation helps ensure stability in the electricity market. 

Accurate forecasts enable market participants to plan their actions better, reducing price fluctuations and increasing 

supply reliability. 

4. Implementation of International Obligations: For many countries, including Ukraine, generation 

forecasting is part of fulfilling international commitments regarding the development of renewable energy sources and 

their integration into the energy system. 

The increase in the share of stochastic energy sources in the energy system brings additional risks associated 

with their probabilistic nature and less stable characteristics, which may lead to imbalances in the energy system [3-7] 

and affect electricity quality [8]. Given the need to ensure the system's balance, it is necessary to develop several 

approaches and recommendations to enable the implementation of controlled renewable energy sources (RES), which 

will function as components of distributed virtual power plants, contributing to the stability of electricity generation.  

According to the electricity market rules [9], market participants submit bids for selling electricity a day ahead, 

specifying volumes that must not deviate by more than 5%. One of the major challenges is the difficulty of forecasting 

the generation of electricity from photovoltaic power stations (PPS), as the process itself is influenced by numerous 

factors. Taking into consideration the above, the development of adequate models is highly relevant. 

To ensure the energy system's balance, approaches and recommendations should be developed to integrate 

controlled renewable energy sources as components of distributed virtual power plants. This will provide a stable 

electricity supply and ensure the system’s balance. 

The generation of electricity from renewable sources faces significant challenges, the main one being the 

difficulty of forecasting. This is due to the large number of factors influencing the generation process. Given the above, 

constructing adequate models is an urgent task. 

The aim of this work is to improve the accuracy of day-ahead electricity generation forecasting by 

photovoltaic power stations through the use of machine learning methods, particularly taking into account the impact 

of cloud cover. This, in turn, will help improve economic indicators by reducing the risks of imbalance penalties. In 

addition, improved forecasting accuracy will increase electricity production levels, positively affecting the overall 

efficiency of photovoltaic power stations and optimizing operational costs. 

Analysis of previous research. Generally, forecasting is performed based on different time periods, known as 

forecasting horizons. Very short-term forecasting (1 sec ≤ 1 hour) helps distribute electricity in real-time, optimize 

resources, and balance power [10]. Short-term forecasting (1 hour–24 hours) improves grid reliability and optimizes 

system operations [11]. Medium-term forecasting (week–month) establishes schedules for system planning and 

maintenance by forecasting available electricity. Long-term forecasting (month–year) involves distribution and 

transmission management, electricity production planning, as well as measures to ensure energy consumption and 

security [12, 13]. 

Various methods have been used for forecasting photovoltaic generation, such as ARMA, ARIMA, ARMAX, 

coupled autoregressive and dynamic systems (CARDS), regression, and regression trees. The accuracy of these methods 

is better for short-term horizons. However, accuracy decreases as the forecasting horizon and generation scale increase 

[14-15]. Nonlinear data also limit these methods. Based on cloud tracking and forecasting, sky photographs and satellites 

have been used to predict solar radiation on an ultra-short-term basis [16-17]. The accuracy of image-based forecasting 

methods directly depends on image processing algorithms. However, based on low-resolution satellite data and limited 

sky image coverage from the ground, the forecasting accuracy of these methods requires further improvement. 

Numerical weather prediction (NWP) is used for medium-term forecasting (up to 15 days) of solar radiation. However, 

its application is limited due to data access restrictions imposed by national meteorological departments [18-19]. 
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Artificial Neural Networks (ANN) in [20-21] and Adaptive Neuro-Fuzzy Inference System (ANFIS) in [29] 

are among the machine learning methods applied for solar energy forecasting. They handle nonlinear systems better and 

adapt to the variable behavior of solar energy. However, challenges such as random initial data, local minima, 

overfitting, and increased complexity due to the multilayer structure affect system reliability [30, 31]. Meanwhile, 

Support Vector Machines (SVM) have demonstrated better forecast accuracy for solar energy [32-33]. However, they 

are extremely sensitive to parameters such as the penalty coefficient (C), kernel function, and the epsilon radius (ɛ). 

Choosing the right parameters is a complex task. The weights and biases of hidden nodes in the Extreme Learning 

Machine (ELM) are randomly selected [34]. 

"In the article [35], the authors proposed an approach to forecasting electricity production from alternative 

sources in developing countries (using Ukraine as an example) based on the use of classical (ARIMA, TBATS) and 

modern (Prophet, NNAR) methods. Although the results show quite high forecasting accuracy, the authors did not 

investigate how flexible this approach is for use in relatively new power plants, where there is not enough data for 

training. Accordingly, to improve the forecasting accuracy for relatively new power plants, it is necessary to consider a 

number of factors that directly affect electricity generation, which makes this approach less effective 

Existing forecasting methods vary depending on the forecasting task, including long-term and short-term 

forecasts. The majority of existing forecasting models are based on ARMA, ARIMA, ARMAX models, artificial neural 

networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and recurrent neural networks (RNN). Existing 

forecasting models also use image recognition and natural language processing (NLP). A drawback of these models is 

that they require a large amount of data for training; otherwise, they fail to provide the necessary forecast accuracy, 

specifically within a 10% margin. As the amount of data increases, the model becomes less flexible, especially 

considering that most photovoltaic stations are new or have been modernized multiple times over the past 5-10 years. 

Research results. When building the forecasting model, data from the electricity generation monitoring at a 

private PPS located in the Vinnytsia region was used. 

The dataset contains the following parameters, as presented in Figure 1: 

 "DATE_TIME" – Generation timestamp; 

 "ENERGY" – Generation power at the time of recording [kWh]; 

 "CLOUDY" – Cloud cover [%]; 

 "SOLAR_RADIATION" – Solar radiation [%]. 

 
Fig.1. Fragment of the Dataset on Electricity Generation by the Photovoltaic Power Station 

In the study [36], the author investigated the issue of forecasting electricity generation at a photovoltaic power 

station (PVS) but failed to account for several key parameters, such as cloud cover directly over the PVS location. 

Furthermore, the use of the RandomForestRegressor library did not provide the necessary accuracy for the given task. 

Considering this information, the current model also includes cloud coverage directly over the solar station. The 

cloudiness data was sourced from a weather forecasting service [37]. 

As a result, prediction models were constructed using the following libraries: Decision Tree Regressor, 

Random Forest Regressor, and LightGBM Regressor [38]. Model parameters were selected to filter out the anomalous 

values caused by such factors as emergency power system modes, sharp snowfall, or dust accumulation on the panels 

due to bad weather. Predictions were made, and accuracy metrics were calculated for these models. Graphs illustrating 

the dependence on the time of day, week, and season were also plotted (Figures 2 and 3). 

 
Fig.2. Electricity Generation Graphs Over a 24-Hour Period 
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Fig.3. Daily Cloud Cover Variation Graphs 

 

After training the Decision Tree Regressor model on the training and validation datasets, the following results 

were obtained: the coefficient of determination (R²) for the training data was 0.9998 (Figure 4), indicating excellent 

reproduction of the training data. At the same time, the model demonstrated a significantly lower but still very high 

result of 0.9848 on the validation data (Figure 5), which indicates the model's good generalization ability and accuracy 

when working with unknown data. 

 

 
Fig.4. Prediction Accuracy of the Training Model “Decision Tree Regressor” 

 

 
Fig.5. Prediction Accuracy of the Validation Model “Decision Tree Regressor” 

 

During the training of the model, the results of forecasting the training data were conducted using the Random 

Forest Regressor algorithm (Figure 6). As can be seen from the obtained results, the model demonstrated the coefficient 

of determination (R²) value of 0.9982 for the training data, indicating an extremely high level of accuracy and effective 

adjustment to the training data. The results on the validation data show a slightly lower but still very high value of 

0.9908 (Figure 7), which indicates the model's good ability to generalize information and work with new, unknown 

data. 
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Fig.6. Prediction Accuracy of the Training Model “Random Forest Regressor” 

 
Fig.7. Prediction Accuracy of the Validation Model “Random Forest Regressor” 

 

During the investigation, the model was trained and the results of forecasting the training data were analyzed 

using the LightGBM Regressor algorithm (Figure 8). 

The results showed that the model achieved a high coefficient of determination (R²) of 0.9969 on the training 

data, indicating its precise adaptation to the training data. On the validation data, the model demonstrated a slightly 

lower R² value of 0.9925 (Figure 9), which indicates its excellent ability to generalize results and work with new, 

unknown data. 

 
Fig.8. Prediction Accuracy of the Training Model “LightGBM Regressor” 
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Fig.9. Prediction Accuracy of the Validation Model “LightGBM Regressor” 

 

For example, the graphical interpretation of the forecasting results based on the LightGBM Regressor model 

for the training, validation, and test data is presented in Figures 10-12, respectively. The red line represents the 

established (maximum possible) electricity generation of the photovoltaic power plant. 

 

 
Fig. 10. Prediction of Training Data 

 

 

 
Fig. 11. Prediction of Validation Data 
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Fig. 12. Prediction of Test Data 

 

 Figure 13 shows a table of the prediction results obtained using the studied models. 

 

 
Fig.13. Results of the Studies of Prediction Models for PV Power Generation 

 

As a result of the conducted research, three regression models were analyzed (see Fig. 13): Decision Tree 

Regressor, Random Forest Regressor, and LightGBM Regressor. 

The Decision Tree Regressor model demonstrated an extraordinarily high coefficient of determination R^2 on 

training data (0.9998), but its result on validation data (0.9848) indicates possible overtraining. 

 The Random Forest Regressor model showed more balanced results – R^2 on training data was 0.9982, 

while on validation data it was 0.9908, indicating good generalization capability. 

 The most stable results were shown by the LightGBM Regressor model, which achieved R2R^2R2 of 

0.9969 on training data and 0.9925 on validation data. This indicates its effective ability to generalize data and prediction 

accuracy. 

 Based on the analysis, the LightGBM Regressor is the best model among the three, as it demonstrated the 

highest accuracy on validation data while maintaining stable results. 

Conclusions 

An analysis of the electricity market and the legislative framework regulating the energy market in Ukraine 

has been conducted. The selection of parameters for the creation of a model for predicting electricity generation at solar 

power plants was carried out, better prediction accuracy was achieved by taking cloud cover into account. The impact 

of Random Forest Regressor parameters on the accuracy of electricity generation predictions at solar power plants has 

been examined. Research results can be generalized and used to forecast the generation from any unstable renewable 

energy sources. 
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