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EFFICIENCY ANALYSIS FOR DCT-BASED DENOISING OF SPEECH SIGNALS 

 
This paper investigates the problem of noise suppression in speech signals, where interference is modeled using the 

Additive White Gaussian Noise (AWGN) model. A key challenge for this case is to effectively reduce noise without introducing 

audible artifacts that degrade the perceptual quality of the speech. We employ a denoising method based on the Discrete Cosine 

Transform (DCT), which is applied to fully overlapping signal blocks of fixed sizes (16, 32, and 64 samples). The effectiveness of 

the proposed approach is comprehensively evaluated using both objective and perceptual criteria. The improvement in the output 

Signal-to-Noise Ratio (SNR) compared to the input (ISNR) serves as the objective measure. The perceptual quality of the processed 

speech is assessed using the standard Perceptual Evaluation of Speech Quality (PESQ) metric. We investigate the dependence on 

the input Signal-to-Noise Ratio (SNR), the processing block size, the type of threshold applied (hard and combined), and the 

parameter β employed in threshold calculation. The analysis, conducted on a set of standard Harvard sentence test signals, yielded 

highly consistent results and revealed the following tendencies: 1) A block size of N=64 consistently provides the best denoising 

efficiency according to both metrics compared to sizes N=16 and N=32; 2) The greatest gain in the ISNR metric is observed at 

low input SNR values, which is particularly important for highly noisy signals; 3) The optimal value of the parameter β depends 

strongly on both the input SNR0 (generally decreasing as SNR increases for ISNR optimization) and the chosen evaluation metric; 

4) The combined threshold demonstrates an advantage over the hard threshold according to the perceptual PESQ metric, provided 

β is selected appropriately, whereas their ISNR performance characteristics are approximately the same for the respective optimal 

β values. Ultimately, this study underscores the necessity of an adaptive approach to parameter selection, tailored to both the 

specific noise conditions and the primary application's performance metric, whether objective or perceptual. Moreover, the 

computational complexity of the DCT-based method remains manageable, making it suitable for real-time applications. Examples 

of signal processing are presented and discussed. 
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БРИСІН ПЕТРО 

ЛУКІН ВОЛОДИМИР 
Національний аерокосмічний університет ім. М.Є. Жуковського "ХАІ" 

 

АНАЛІЗ ЕФЕКТИВНОСТІ ЗНЕШУМЛЕННЯ МОВНИХ СИГНАЛІВ НА ОСНОВІ ДКП 

 
Наша стаття присвячена традиційній задачі видалення шумів у мовних сигналах. Перешкоди моделюються як адитивний 

білий гаусів шум. Його придушення базується на дискретному косинусному перетворенні (ДКП), застосованому для блоків фіксованого 

розміру, що повністю перекриваються. Як кількісні критерії ефективності придушення шуму використовуються покращення вихідного 
відношення сигнал/шум (ВСШ) порівняно з вхідним, а також метрика PESQ. Проаналізовано кілька тестових мовних сигналів, і 

результати, що отримані для них, дуже схожі. Ця ефективність залежить від кількох факторів, у тому числі відношення вхідного 

сигналу до шуму, розміру блоку, типу використовуваного порогу (жорсткий і/або комбінований) і параметра β, який використовується 
при обчисленні порога. Спостережувані тенденції такі: 1) найбільше покращення ВСШ за рахунок фільтрації відбувається при малих 

вхідних ВСШ; 2) оптимальні значення β зазвичай зменшуються, якщо вхідне ВСШ збільшується; 3) є випадки, коли комбінований поріг 

перевершує підхід до обробки мовних сигналів, який спирається на жорсткий поріг; 4) використання розміру блоку, що дорівнює 64, 
призводить до кращої ефективності видалення шуму порівняно з випадками розміру блоку, що дорівнює 32 і 16. Наведено та обговорено 

приклади обробки сигналів. 

Ключові слова: адитивний білий гаусів шум, ДКП-фільтрація, аналіз ефективності, розмір блока 
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Problem overview 

Speech and other types of audio signals are often noisy due to several reasons [1]. Because of this, great 

attention has been paid to filtering (denoising) of such signals over the past 40 years. Initially, linear finite impulse 

response (FIR) and various adaptive filters [1-3] were developed. Later and in parallel, orthogonal transform 

techniques based on wavelets and DCT were studied [4, 5]. The use of auto-encoders and convolutional neural 

networks has become popular recently [6]. 

For different applications, there are different reasons for the presence of noise in registered audio and speech 

signals. This noise might be quite intensive – this takes place in crowded rooms and places [7] as well as in 

hydroacoustics [8]. In addition, the noise intensity and spectral characteristics might vary in time in quite wide limits 

[7, 9]. Recall that there are several applications where noise removal should be carried out in real time [10]. 

Summarizing the aforesaid, a speech signal denoising method should be able to adapt to the properties of the registered 
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signal and noise. At the same time, such a method and the corresponding algorithm have to be simple and fast enough 

to be a good candidate for practical application. This imposes restrictions on the size of scanning windows or blocks 

used for producing the output signal with a suitable delay with respect to the input [11]. One should also keep in mind 

that, in speech denoising, the perception of input and/or output signals is important where the SNR and its 

improvement are not strictly connected with speech perception; due to this, special metrics of speech quality are often 

employed [11, 12]. 

As mentioned previously, there are quite many papers on speech denoising that consider the use of wavelets 

[4, 5, 11]. Meanwhile, other orthogonal transforms such as DCT [13-15] can be a useful tool as well. Having excellent 

energy compaction properties, DCT is widely exploited in signal/image filtering [14, 16, 17] and lossy compression 

[18, 19]. In addition, DCT is characterized by high computational efficiency and existence of fast algorithms [15]. 

Besides, DCT-based filtering is carried in blocks of a rather small size that allows obtaining the filter output with a 

quite small delay with respect to input data. Moreover, the DCT-based filter performance can be predicted in advance 

[20]. Taken together, these positive features allow expecting DCT-based filtering to perform well for noise 

suppression in speech and audio signals. In fact, this has already been shown in our paper [14]. Meanwhile, it has been 

demonstrated that the DCT-based filter performance depends on several factors, namely input SNR, threshold type 

and its value. The study has been performed for the fixed block size of 32 samples and it is not clear is this block size 

the best choice and are the tendencies discovered in [14] valid for other possible block sizes. 

Therefore, the goal of this paper is to study the performance of the DCT-based filter for speech signals 

contaminated by AWGN for other block sizes. The main considered aspects are the following: 1) we analyze the filter 

characteristics over a wide range of input SNR values; 2) we study three sizes of blocks (16, 32 and 64) and compare 

the results; 3) we consider hard and combined thresholds with optimization of the thresholds for both cases; 4) we 

apply the speech perception criterion PESQ and analyze the filter performance according to it alongside with 

conventional SNR. 

Analysis of recent sources on transform-based denoising 

A starting point in orthogonal transform-based denoising was, probably, the paper [21] where wavelets were 

used. A common assumption behind such denoising is that the main part of information is contained in a limited 

number of large amplitude spectral coefficients whilst the noise is spread between all components and, thus, small 

amplitude spectral components, most probably, relate to the noise and can be neglected. Later it was shown that 

denoising efficiency depends on several factors including a used wavelet type, threshold type and its setting, etc. This 

has led to the widespread application of wavelet-based denoising in different signal/image processing areas including 

speech filtering. 

Here are some examples. The authors of [5] designed double-density dual-tree discrete wavelet transform 

(DDDTWT) and applied a level dependent thresholding algorithm. They demonstrated improvement of output SNR 

in comparison with several earlier proposed analogs. Wishwakarma et al [4] studied the Coiflet wavelets for audio 

signal denoising. They showed that output SNR or, equivalently, mean square error (MSE) strongly depended on the 

threshold type and settings and could be significantly improved due to filtering. One more wavelet type, the Haar one, 

was considered by the authors of [22] where it was demonstrated an essential dependence of performance on the 

threshold type. Aggarwal et al [23] studied and compared soft and hard thresholding. Moreover, they proposed 

modified universal thresholding where output SNR was used as the main performance criterion. The low input SNR 

was considered in [24] where the authors analyzed the preliminary filtering impact on speech feature extraction. Two 

important conclusions were drawn. First, preliminary filtering was shown useful. Second, the best results were 

provided by the Fejer-Korovkin 6 wavelet based denoising. 

The analysis carried out above shows the following. First, the denoising efficiency significantly depends on 

the wavelet type. Second, the threshold type and value are two more factors determining the filter performance. Note 

here that the threshold is usually set proportional to the noise standard deviation (STD) where the AWGN STD can 

be quite accurately estimated automatically [25, 26]). Third, the researchers mainly consider input SNR in the limits 

from 0 to 30 dB since, for the input SNR about 35-40 dB, the noise becomes hardly noticed and, therefore, it becomes 

useless to carry out noise removal. Fourth, in parallel to using conventional criteria of filtering efficiency (output MSE 

or SNR improvement due to denoising), the criteria characterizing signal perception are widely employed. 

All these conclusions and observations were taken by us into account in [14] dealing with one-dimensional 

(1-D) DCT-based denoising in blocks of size 16. Note here that the block size equal to the powers of two such as 8, 

16, 32, 64, and 128 for the 1D case [13] and 8×8 or 16×16 pixels in image denoising [27] is a common practice if one 

wants to provide high computational efficiency due to exploiting fast DCT algorithms. Recall here that DCT for each 

block is used twice: one first applies direct DCT, then thresholding of the determined AC DCT coefficients is 

performed, and, finally, inverse DCT is carried out. Then, time expenses considerably depend on the time spent on 

DCT since other operations are fast enough. Really, the thresholding is very simple (see the details in the next section) 

and data aggregation for fully overlapping blocks is based on averaging. Similarly to [14], we further consider the 

DCT-based denoising with fully overlapping blocks since this variant provides the highest efficiency in terms of 

output SNR and perception quality. 

Other conclusions stemming from [14] are the following. The threshold type (hard and combined [28] 

thresholds were studied in [14]) has a certain impact on processing. Parameter β, used in threshold setting, is also 

important, since maximum processing efficiency can be observed for different (optimal) β values. Filtering efficiency 
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characterized by, for example, SNR improvement is larger for smaller input SNR depending on signal properties as 

well. Meanwhile, the analysis in [14] was carried out for a single block size, N=32. Because of this, it is unclear if the 

aforementioned conclusions are valid for other values of N, and how filtering efficiency depends on N. 

Presentation of the main material 

To study the filtering efficiency, we need noise-free test signals. Here, we use the same option as in [14], i.e. 

employ several (five) recorded English language Harvard phrases which are often considered as standard [29, 30]. All 

records are 2 s long and the sampling rate for them is 16 kHz which is considered to be the standard for high quality 

speech records. 

One condition in filter design is that the denoising techniques (algorithms) have to be applicable and efficient 

for a wide range of input SNRs. Different SNRs can be simulated in various ways. To vary input SNR, we used the 

fixed power of signal (Psig) and different intensities (powers) of AWGN (Pnoise) added artificially to obtain the 

signal/noise mixture. The following SNRs have been modelled: 0, 5, 10, 15, and 20 dB where SNR in decibels is 

expressed as: 

SNRdB= 10log10(
Psig

Pnoise
)     (1) 

For SNRdB≤20 dB, the noise is clearly audible in noisy signals. 

Here, it is worth giving details concerning 1-D DCT-based denoising. Suppose S(i), i = 1,...,I is the noise-

free signal that should be estimated having an observed realization Sn(i)=S(i) + n(i), i=1,...,I of signal/noise mixture 

where(i is the sample index, I is the total number of samples, n(i), i=1,...,I denotes the AWGN having zero mean and 

variance 2 supposed to be known in advance or accurately pre-estimated. The estimation of information signal has 

to be done by means of obtaining such an estimate Sf(i),i=1,...,I that has to be as close as possible to the noise-free 

signal S(i),i=1,...,I according to a chosen criterion. A good filter (estimator) should provide the output MSE 

considerably less than 2 or improvement of another metric (criterion) chosen for a task to be solved. 

For the considered filter, an l-th block includes values Sn
bl(l, j)={Sn(l + j - 1)}, j= 1,...,N where, for the fully 

overlapping block case, l = 1,...,I-N+1 (in other words, l is the index of the leftmost sample included in a given l-th 

block). For each block, a direct DCT is first carried out with obtaining the DCT coefficients D(k),k=1,...,N. Note that 

D(1) corresponds to the block mean and the thresholding operation is not applied to it. For the hard thresholding, one 

has: 

Dthr(k) = {
D(k),   if |D(k)| >  T

0,          if |D(k)| ≤  T
  , k =  2, . . . N,   (2) 

In turn, the combined thresholding presumes that even small-amplitude DCT values might contain 

information and, because of this, their values have to be diminished but not assigned to zeroes: 

Dthr(k) = {
D(k),          if |D(k)| >  T

D3(k)/T2, if |D(k)| ≤  T
  , k =  2, . . . N,   (3) 

where, in both cases, T denotes the threshold value, which is set as βσ. Here, β is a factor that can be set by 

a user or determined in some other way, e.g., adaptively. For the hard thresholding, it is recommended to set β=2.7 by 

default [31]; for the combined thresholding (3), the recommended values of β are about 4.3 [32]. 

Then, the inverse DCT is applied to Dthr(k),k=1,...,N with obtaining the denoised filtered values for the given 

block Sf
bl(l) =｛Sf(l + j - 1), j= 1,...,N. As one can see, there can be from one (for the first and last blocks) to N filtered 

values belonging to different overlapping blocks. Below, we concentrate on the simplest variant of their processing 

assuming simple averaging of the obtained estimates. Other options have not resulted in significantly better outcomes. 

Filtering efficiency can be characterized [33] by MSE/σ2 ratio where: 

MSE =∑
[S(i) − Sf(i)]

2

I−1

I

i=1
,      (4) 

or, equivalently, by the improvement in the SNR due to filtering (expressed in dB): 

ISNR= 10𝑙𝑜𝑔10 (
σ2

MSE
) = 𝑆𝑁𝑅out  −  𝑆𝑁𝑅inp   (5) 

Since speech signals are subject to perception by humans, it is also worth using special speech quality metrics, 

e.g., the Perceptual Evaluation of Speech Quality (PESQ) [34] recommended by ITU-T (the standard ITU-T P.862) 

[35]. PESQ takes into account such aspects of speech quality as clarity, crispness and naturalness. Some details are 

given in [14, 34]. Here, we would like to mention the following. PESQ values are in the limits from -0.5 to 4.5 where 

the scale rearrangement to mean opinion score from 1 to 5 is possible. Then, the quality is considered bad for 

PESQ≤2.6 and for PESQ≥4.3 all listeners are very satisfied. 

We have used five files with notations F0-F4. Figure 1,a shows the dependence of  improvement in signal-

to-noise ratio (ISNR) on the parameter β for the speech signal (file F0) for SNR=10 dB at the filter input. A set of six 

graphs is presented. The solid lines show the dependences for hard thresholding whilst the dashed lines – for the 

combined thresholding. As one can see, all dependences have maxima where they are observed for βopt≈2.9 for hard 

thresholding and βopt≈4.7 for combined thresholding. The optimal β has some tendency to increase for smaller N. 

Meanwhile, the results for the corresponding optimal β are always better for N=64. ISNR is large enough and reaches 

7 dB for N=64 for both threshold types. The results for both threshold types are almost the same. 
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а) 

 
b) 

Fig. 1. Dependences of ISNR on β for the files F0 (a) and F1 (b) 

 

Let us check whether the results are similar for another test signal. For the audio file F1, the dependences are 

given in Fig. 1,b. The optimal β are slightly smaller and the maximal values of ISNR are slightly smaller too. We 

associate this with a more complex structure of the signal component for the file F1 compared to the file F0. For other 

files, the results are fall between the results for the files F0 and F1. 

Consider now the results for other input SNRs. The dependences for input SNR equal to 0 dB are represented 

in Fig. 2,a. The corresponding optimal β are slightly larger than for the dependences in Fig. 1,a. The maximal ISNR 

values are larger too. The method based on the combined thresholding performs slightly worse. The dependences for 

the input SNR equal to 20 dB are shown in Fig. 2,b. Here, the optimal β are smaller and the maximal ISNR are smaller 

too. There is practically no difference in efficiency for both types of thresholding. In all cases, the results for N=64 

are the best. 

The dependences obtained for input SNRs equal to 0 and 20 dB for other test signals are in good agreement 

with the results in Fig. 2. Thus, according to ISNR, the conclusions are the following: 1) there is no significant 

difference what type of thresholding is applied; 2) it is reasonable to use N=64; 3) it is possible to recommend setting 

β about 3 for hard thresholding and about 4.8 for combined thresholding although adaptation to signal complexity and 

input SNR seem possible (this can be studied in the future). 
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а) 

 
b) 

Fig. 2. Dependences of ISNR on β for the file F0 for input SNRs equal to 0 dB (a) and 20 dB (b) 

 

Consider now the PESQ metric. The obtained results are given in another way in Figures 3-5. First of all, 

horizontal solid lines of different color show PESQ values for input signals having five different input SNR: 0 dB 

(red), 5 dB (green), 10 dB (blue), 15 dB (black), and 20 dB (cyan). Dashed lines correspond to hard thresholding and 

dotted ones correspond to combined thresholding. The dependences for N=16 are presented in Fig. 3. Their analysis 

shows the following: 

1) For any filtering (except the case of input SNR equal to 20 dB for β>6), the hard threshold DCT-based 

denoising leads to PESQ improvement; the combined threshold DCT based denoising improves PESQ for entire 

considered range of 2<β<10; 

2) However, the maxima for different input SNRs are observed for considerably different β; for hard 

thresholding, βopt≈2.8 for input SNR equal to 10 dB or larger although for SNRinp<10 dB the dependences might have 

several maxima and the global one corresponds to βopt considerably larger than 2.8; for combined thresholding, optimal 

β also vary and they are significantly larger than according to ISNR (see the plots in Figures 1 and 2); it is possible to 

recommend setting β≈7 but adaptive setting seems reasonable as well (this can be the direction of further studies); 

3) Even being filtered, the speech signals remain of poor quality for SNRinp≤10 dB; 

4) According to the PESQ metric, the DCT-based denoising with combined thresholding is preferable under 

condition that β is set properly; thus, filtering with the best ISNR is not the best solution if one wants to provide the 

best perception of the speech signal after denoising. 

5) Note that the conclusions given above for the file F0 are in perfect agreement with conclusions for other 

four files. 
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The results for N=32 are presented in Fig.4. Here, the analysis leads to the same conclusions with the only 

exception. For SNRinp equal to 0 and 5 dB, the combined thresholding does not lead to better results than hard 

thresholding. Meanwhile, despite PESQ improvement, the speech signal quality remains poor. Compared to N=16 

(Fig. 3), the results for N=32 have improved. 

Finally, Fig. 5 gives the dependences for N=64. For them, the conclusions are the same as above. Meanwhile, 

the filtering efficiency is better than for N=16 and N=32. Consider a particular case of SNRinp=15 dB. For the hard 

thresholding with β=3, one has PESQ=2.60 for N=16, 2.73 for N=32, and 2.89 for N=64. For the combined 

thresholding with β=7, we have PESQ=2.81 for N=16, 3.15 for N=32, and 3.22 for N=64. 

To partly prove the conclusions, Fig. 6 presents the dependences for the file F1 for N=64. Here the advantages 

of filtering with combined thresholding are even more obvious. 

 

 
Fig. 3. Dependences of PESQ on β (file F0) for five input SNRs and two threshold types, N=16 

 

 
Fig. 4. Dependences of PESQ on β (file F0) for five input SNRs and two threshold types, N=32 
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Fig. 5. Dependences of PESQ on β (file F0) for five input SNRs and two threshold types, N=64 

 

 
Fig. 6. Dependences of PESQ on β (file F1) for five input SNRs and two threshold types, N=64 

 

Let us also give some filtering examples. Fig. 7 presents a 0.5 s fragment of the test signal (noise-free and 

noisy, SNRinp=10 dB) as well as its filtered versions for N=32 and N=64 with hard and combined thresholding with 

optimal β. As seen, filtering is quite efficient in the sense of noise removal and signal preservation. However, the 

filtering results for N=64 seem to be the best. 
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Fig. 7. Time diagrams of the F0 signal processing. a) - reference, b) - signal + noise (SNR =10dB), c) - filtered signal (N = 32, hard 

threshold, β = 3.0), d) - filtered signal (N = 32, combined threshold, β = 4.8), e) - filtered signal (N = 64, hard threshold, β = 2.8), f) - 

filtered signal (N = 64, combined threshold, β = 4.6) 

 

Conclusions 

In this paper, we have considered the task of denoising the speech audio signals contaminated by AWGN. 

Different versions of 1-D DCT-based filtering with fully overlapping blocks have been studied. It is shown that the 

use of the block size N=64 is preferable. According to the PESQ metric, the combined thresholding with β≈7 is 

preferable. Meanwhile, according to ISNR, both filtering approaches produce approximately the same results where 

the optimal β for the combined thresholding is smaller (about 5). This opens the room for adaptation to input SNR 

and signal complexity. Besides, other perception quality metrics are worth considering. 
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