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EFFICIENCY ANALYSIS FOR DCT-BASED DENOISING OF SPEECH SIGNALS

This paper investigates the problem of noise suppression in speech signals, where interference is modeled using the
Additive White Gaussian Noise (AWGN) model. A key challenge for this case is to effectively reduce noise without introducing
audible artifacts that degrade the perceptual quality of the speech. We employ a denoising method based on the Discrete Cosine
Transform (DCT), which is applied to fully overlapping signal blocks of fixed sizes (16, 32, and 64 samples). The effectiveness of
the proposed approach is comprehensively evaluated using both objective and perceptual criteria. The improvement in the output
Signal-to-Noise Ratio (SNR) compared to the input (ISNR) serves as the objective measure. The perceptual quality of the processed
speech is assessed using the standard Perceptual Evaluation of Speech Quality (PESQ) metric. We investigate the dependence on
the input Signal-to-Noise Ratio (SNR), the processing block size, the type of threshold applied (hard and combined), and the
parameter f employed in threshold calculation. The analysis, conducted on a set of standard Harvard sentence test signals, yielded
highly consistent results and revealed the following tendencies: 1) A block size of N=64 consistently provides the best denoising
efficiency according to both metrics compared to sizes N=16 and N=32; 2) The greatest gain in the ISNR metric is observed at
low input SNR values, which is particularly important for highly noisy signals; 3) The optimal value of the parameter  depends
strongly on both the input SNRO (generally decreasing as SNR increases for ISNR optimization) and the chosen evaluation metric;
4) The combined threshold demonstrates an advantage over the hard threshold according to the perceptual PESQ metric, provided
P is selected appropriately, whereas their ISNR performance characteristics are approximately the same for the respective optimal
P values. Ultimately, this study underscores the necessity of an adaptive approach to parameter selection, tailored to both the
specific noise conditions and the primary application's performance metric, whether objective or perceptual. Moreover, the
computational complexity of the DCT-based method remains manageable, making it suitable for real-time applications. Examples
of signal processing are presented and discussed.
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BPUCIH IETPO
JIYKIH BOJIOAUMUP

Harionansauit aepokocmivnmii yHiBepcuTeT iM. M.€. XKyxopcpkoro "XAI"
AHAJII3 EOEKTUBHOCTI 3HEINYMJIEHHS MOBHUX CUT'HAJIIB HA OCHOBI JKII

Hawa cmammsa npuceésyena mpaouyivinivi 3a0aui uoanients wymie y Mosuux cucrnanax. Ilepewxoou mooenioiomuvcs Ak aoumueHul
Ginuii 2aycie wym. Hozo npudywenns 6azyempcs na ouckpemmomy xocunycromy nepemeopenni (AKTI), sacmocosanomy ons 610Kie gikcoganozo
PO3MIPY, Wo nogricmio nepexkpusaromuvcs. Ak Kinbkicui kpumepii egpexmuenocmi npuoyweHHs uymy UKOpUCHOSYIOMbCsl NOKPAWeH s BUXIOHO20
sionowenns cuenan/uyym (BCIL) nopiensno 3 exionum, a makooic mempuxa PESQ. IIpoananizoeano Kintbka mecmogux MOSHUX CUSHATIG, |
pe3yIbmamu, wo ompumaHi Ons HUX, Oyoce cxoxci. L eghekmusnicmo 3anexcums 6i0 KilbKOX (axmopis, y momy 4ucii 6i0HOUEHHs 6XiOHO20
cueHay 00 wiymy, posmipy 610Ky, muny UKOpUCHo8y8aHo2o nopoay (scopcmiutl i/abo kombinosanuil) i napamempa P, AKull GUKOPUCHOBYENMbCS
npu obuucnenni nopoea. Cnocmepesicysani mendenyii maxi: 1) naibinouwe noxkpawenns BCILL 3a paxynox ginempayii 6i06ysacmvcs npu mMaiux
exionux BCLL; 2) onmumansui suauenns ff 3a3euvail smenwyiomocs, sikujo eéxione BCLL 36invuyemocs; 3) € unaoxu, Koy KOMOIHO8aNUIl nopie
nepeseputye nioxio 00 06poOKU MOBHUX CUCHATNIB, AKUL CNUPACMbCS HA JCOPCMKULL nopie; 4) euxopucmants posmipy 610Ky, wjo oopishioe 64,
npu3eo0Ums 00 Kpawjoi eqpekmuenocmi GUOANEHHS WyMy NOPIGHAHO 3 BUNAOKAMU PO3MIPY 610Ky, uwjo dopisuioe 32 i 16. Hasedeno ma 062060pero
NPUKIAOU 06pOOKU CUSHANIS.

Knouosi crosa: aoumuenuii oinuii eaycie wiym, JJKII-ghinempayis, ananiz epexmusnocmi, posmip b6aoxa
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Problem overview

Speech and other types of audio signals are often noisy due to several reasons [1]. Because of this, great
attention has been paid to filtering (denoising) of such signals over the past 40 years. Initially, linear finite impulse
response (FIR) and various adaptive filters [1-3] were developed. Later and in parallel, orthogonal transform
techniques based on wavelets and DCT were studied [4, 5]. The use of auto-encoders and convolutional neural
networks has become popular recently [6].

For different applications, there are different reasons for the presence of noise in registered audio and speech
signals. This noise might be quite intensive — this takes place in crowded rooms and places [7] as well as in
hydroacoustics [8]. In addition, the noise intensity and spectral characteristics might vary in time in quite wide limits
[7, 9]. Recall that there are several applications where noise removal should be carried out in real time [10].
Summarizing the aforesaid, a speech signal denoising method should be able to adapt to the properties of the registered
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signal and noise. At the same time, such a method and the corresponding algorithm have to be simple and fast enough
to be a good candidate for practical application. This imposes restrictions on the size of scanning windows or blocks
used for producing the output signal with a suitable delay with respect to the input [11]. One should also keep in mind
that, in speech denoising, the perception of input and/or output signals is important where the SNR and its
improvement are not strictly connected with speech perception; due to this, special metrics of speech quality are often
employed [11, 12].

As mentioned previously, there are quite many papers on speech denoising that consider the use of wavelets
[4, 5, 11]. Meanwhile, other orthogonal transforms such as DCT [13-15] can be a useful tool as well. Having excellent
energy compaction properties, DCT is widely exploited in signal/image filtering [14, 16, 17] and lossy compression
[18, 19]. In addition, DCT is characterized by high computational efficiency and existence of fast algorithms [15].
Besides, DCT-based filtering is carried in blocks of a rather small size that allows obtaining the filter output with a
quite small delay with respect to input data. Moreover, the DCT-based filter performance can be predicted in advance
[20]. Taken together, these positive features allow expecting DCT-based filtering to perform well for noise
suppression in speech and audio signals. In fact, this has already been shown in our paper [14]. Meanwhile, it has been
demonstrated that the DCT-based filter performance depends on several factors, namely input SNR, threshold type
and its value. The study has been performed for the fixed block size of 32 samples and it is not clear is this block size
the best choice and are the tendencies discovered in [14] valid for other possible block sizes.

Therefore, the goal of this paper is to study the performance of the DCT-based filter for speech signals
contaminated by AWGN for other block sizes. The main considered aspects are the following: 1) we analyze the filter
characteristics over a wide range of input SNR values; 2) we study three sizes of blocks (16, 32 and 64) and compare
the results; 3) we consider hard and combined thresholds with optimization of the thresholds for both cases; 4) we
apply the speech perception criterion PESQ and analyze the filter performance according to it alongside with
conventional SNR.

Analysis of recent sources on transform-based denoising

A starting point in orthogonal transform-based denoising was, probably, the paper [21] where wavelets were
used. A common assumption behind such denoising is that the main part of information is contained in a limited
number of large amplitude spectral coefficients whilst the noise is spread between all components and, thus, small
amplitude spectral components, most probably, relate to the noise and can be neglected. Later it was shown that
denoising efficiency depends on several factors including a used wavelet type, threshold type and its setting, etc. This
has led to the widespread application of wavelet-based denoising in different signal/image processing areas including
speech filtering.

Here are some examples. The authors of [5] designed double-density dual-tree discrete wavelet transform
(DDDTWT) and applied a level dependent thresholding algorithm. They demonstrated improvement of output SNR
in comparison with several earlier proposed analogs. Wishwakarma et al [4] studied the Coiflet wavelets for audio
signal denoising. They showed that output SNR or, equivalently, mean square error (MSE) strongly depended on the
threshold type and settings and could be significantly improved due to filtering. One more wavelet type, the Haar one,
was considered by the authors of [22] where it was demonstrated an essential dependence of performance on the
threshold type. Aggarwal et al [23] studied and compared soft and hard thresholding. Moreover, they proposed
modified universal thresholding where output SNR was used as the main performance criterion. The low input SNR
was considered in [24] where the authors analyzed the preliminary filtering impact on speech feature extraction. Two
important conclusions were drawn. First, preliminary filtering was shown useful. Second, the best results were
provided by the Fejer-Korovkin 6 wavelet based denoising.

The analysis carried out above shows the following. First, the denoising efficiency significantly depends on
the wavelet type. Second, the threshold type and value are two more factors determining the filter performance. Note
here that the threshold is usually set proportional to the noise standard deviation (STD) where the AWGN STD can
be quite accurately estimated automatically [25, 26]). Third, the researchers mainly consider input SNR in the limits
from 0 to 30 dB since, for the input SNR about 35-40 dB, the noise becomes hardly noticed and, therefore, it becomes
useless to carry out noise removal. Fourth, in parallel to using conventional criteria of filtering efficiency (output MSE
or SNR improvement due to denoising), the criteria characterizing signal perception are widely employed.

All these conclusions and observations were taken by us into account in [14] dealing with one-dimensional
(1-D) DCT-based denoising in blocks of size 16. Note here that the block size equal to the powers of two such as 8,
16, 32, 64, and 128 for the 1D case [13] and 8x8 or 16x16 pixels in image denoising [27] is a common practice if one
wants to provide high computational efficiency due to exploiting fast DCT algorithms. Recall here that DCT for each
block is used twice: one first applies direct DCT, then thresholding of the determined AC DCT coefficients is
performed, and, finally, inverse DCT is carried out. Then, time expenses considerably depend on the time spent on
DCT since other operations are fast enough. Really, the thresholding is very simple (see the details in the next section)
and data aggregation for fully overlapping blocks is based on averaging. Similarly to [14], we further consider the
DCT-based denoising with fully overlapping blocks since this variant provides the highest efficiency in terms of
output SNR and perception quality.

Other conclusions stemming from [14] are the following. The threshold type (hard and combined [28]
thresholds were studied in [14]) has a certain impact on processing. Parameter B, used in threshold setting, is also
important, since maximum processing efficiency can be observed for different (optimal)  values. Filtering efficiency
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characterized by, for example, SNR improvement is larger for smaller input SNR depending on signal properties as
well. Meanwhile, the analysis in [14] was carried out for a single block size, N=32. Because of this, it is unclear if the
aforementioned conclusions are valid for other values of N, and how filtering efficiency depends on N.

Presentation of the main material

To study the filtering efficiency, we need noise-free test signals. Here, we use the same option as in [14], i.e.
employ several (five) recorded English language Harvard phrases which are often considered as standard [29, 30]. All
records are 2 s long and the sampling rate for them is 16 kHz which is considered to be the standard for high quality
speech records.

One condition in filter design is that the denoising techniques (algorithms) have to be applicable and efficient
for a wide range of input SNRs. Different SNRs can be simulated in various ways. To vary input SNR, we used the
fixed power of signal (Psig) and different intensities (powers) of AWGN (Pnoisc) added artificially to obtain the
signal/noise mixture. The following SNRs have been modelled: 0, 5, 10, 15, and 20 dB where SNR in decibels is

expressed as:
Py

SNRgp = 10l0g10(;5) (M

For SNR¢p<20 dB, the noise is clearly audible in noisy signals.

Here, it is worth giving details concerning 1-D DCT-based denoising. Suppose S(i), i = 1,...,I is the noise-
free signal that should be estimated having an observed realization S,(i)=S(i) + n(i), i=1,...,I of signal/noise mixture
where(i is the sample index, I is the total number of samples, n(i), i=1,...,I denotes the AWGN having zero mean and
variance 62 supposed to be known in advance or accurately pre-estimated. The estimation of information signal has
to be done by means of obtaining such an estimate Sg(i),i=1,...,I that has to be as close as possible to the noise-free
signal S(i),i=1,...,] according to a chosen criterion. A good filter (estimator) should provide the output MSE
considerably less than 62 or improvement of another metric (criterion) chosen for a task to be solved.

For the considered filter, an 1-th block includes values S,'(1, j)={Sa(l1 +j - 1)}, j= L,...,N where, for the fully
overlapping block case, 1 = 1,...,I-N+1 (in other words, 1 is the index of the leftmost sample included in a given 1-th
block). For each block, a direct DCT is first carried out with obtaining the DCT coefficients D(k),k=1,...,N. Note that
D(1) corresponds to the block mean and the thresholding operation is not applied to it. For the hard thresholding, one
has:

Dipr (K) = {g(k)' ‘é 13831 Z ; k= 2,...N, 2)

In turn, the combined thresholding presumes that even small-amplitude DCT values might contain
information and, because of this, their values have to be diminished but not assigned to zeroes:

D(k), ifID(k)| > T
Denr (k) = {D3(k)/T2,if|D(k)| <pk=2.N )
where, in both cases, T denotes the threshold value, which is set as fo. Here, P is a factor that can be set by
a user or determined in some other way, e.g., adaptively. For the hard thresholding, it is recommended to set f=2.7 by
default [31]; for the combined thresholding (3), the recommended values of  are about 4.3 [32].

Then, the inverse DCT is applied to Dur(k),k=1,...,N with obtaining the denoised filtered values for the given
block SP'(1) = {S1+j - 1),j=1,...,N. As one can see, there can be from one (for the first and last blocks) to N filtered
values belonging to different overlapping blocks. Below, we concentrate on the simplest variant of their processing
assuming simple averaging of the obtained estimates. Other options have not resulted in significantly better outcomes.

Filtering efficiency can be characterized [33] by MSE/c? ratio where:

MSE = ZI [sa)l—s;f(i)]i @)
i=1 -

or, equivalently, by the improvement in the SNR due to filtering (expressed in dB):

ISNR = 10l0g10 (=) = SNRoue — SNRinp (5)

Since speech signals are subject to perception by humans, it is also worth using special speech quality metrics,
e.g., the Perceptual Evaluation of Speech Quality (PESQ) [34] recommended by ITU-T (the standard ITU-T P.862)
[35]. PESQ takes into account such aspects of speech quality as clarity, crispness and naturalness. Some details are
given in [14, 34]. Here, we would like to mention the following. PESQ values are in the limits from -0.5 to 4.5 where
the scale rearrangement to mean opinion score from 1 to 5 is possible. Then, the quality is considered bad for
PESQ<2.6 and for PESQ>4.3 all listeners are very satisfied.

We have used five files with notations FO-F4. Figure 1,a shows the dependence of improvement in signal-
to-noise ratio (ISNR) on the parameter 3 for the speech signal (file FO) for SNR=10 dB at the filter input. A set of six
graphs is presented. The solid lines show the dependences for hard thresholding whilst the dashed lines — for the
combined thresholding. As one can see, all dependences have maxima where they are observed for Bop=2.9 for hard
thresholding and Bop=4.7 for combined thresholding. The optimal B has some tendency to increase for smaller N.
Meanwhile, the results for the corresponding optimal B are always better for N=64. ISNR is large enough and reaches
7 dB for N=64 for both threshold types. The results for both threshold types are almost the same.
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SNR improvement for audio file FO
(input SNR = 10dB)

ISNR, dB

SNR improvement for audio file F1
(input SNR = 10dB)

ISNR, dB
w

——N=186, hard
= =N=16, comb

N=32, hard
1 N=32, comb
——N=64, hard
= =N=64, comb

1 | 1 1 1 1 1 |

b)
Fig. 1. Dependences of ISNR on p for the files F0 (a) and F1 (b)

Let us check whether the results are similar for another test signal. For the audio file F1, the dependences are
given in Fig. 1,b. The optimal  are slightly smaller and the maximal values of ISNR are slightly smaller too. We
associate this with a more complex structure of the signal component for the file F1 compared to the file FO. For other
files, the results are fall between the results for the files FO and F1.

Consider now the results for other input SNRs. The dependences for input SNR equal to 0 dB are represented
in Fig. 2,a. The corresponding optimal 3 are slightly larger than for the dependences in Fig. 1,a. The maximal ISNR
values are larger too. The method based on the combined thresholding performs slightly worse. The dependences for
the input SNR equal to 20 dB are shown in Fig. 2,b. Here, the optimal B are smaller and the maximal ISNR are smaller
too. There is practically no difference in efficiency for both types of thresholding. In all cases, the results for N=64
are the best.

The dependences obtained for input SNRs equal to 0 and 20 dB for other test signals are in good agreement
with the results in Fig. 2. Thus, according to ISNR, the conclusions are the following: 1) there is no significant
difference what type of thresholding is applied; 2) it is reasonable to use N=64; 3) it is possible to recommend setting
{3 about 3 for hard thresholding and about 4.8 for combined thresholding although adaptation to signal complexity and
input SNR seem possible (this can be studied in the future).
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SNR improvement for audio file FO
(input SNR = 0dB)
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SNR improvement for audio file FO
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Fig. 2. Dependences of ISNR on B for the file FO for input SNRs equal to 0 dB (a) and 20 dB (b)

Consider now the PESQ metric. The obtained results are given in another way in Figures 3-5. First of all,
horizontal solid lines of different color show PESQ values for input signals having five different input SNR: 0 dB
(red), 5 dB (green), 10 dB (blue), 15 dB (black), and 20 dB (cyan). Dashed lines correspond to hard thresholding and
dotted ones correspond to combined thresholding. The dependences for N=16 are presented in Fig. 3. Their analysis
shows the following:

1) For any filtering (except the case of input SNR equal to 20 dB for >6), the hard threshold DCT-based
denoising leads to PESQ improvement; the combined threshold DCT based denoising improves PESQ for entire
considered range of 2<p<10;

2) However, the maxima for different input SNRs are observed for considerably different ; for hard
thresholding, Bop=2.8 for input SNR equal to 10 dB or larger although for SNR;;,;<10 dB the dependences might have
several maxima and the global one corresponds to Bop: considerably larger than 2.8; for combined thresholding, optimal
B also vary and they are significantly larger than according to ISNR (see the plots in Figures 1 and 2); it is possible to
recommend setting =7 but adaptive setting seems reasonable as well (this can be the direction of further studies);

3) Even being filtered, the speech signals remain of poor quality for SNR;»,<10 dB;

4) According to the PESQ metric, the DCT-based denoising with combined thresholding is preferable under
condition that [ is set properly; thus, filtering with the best ISNR is not the best solution if one wants to provide the
best perception of the speech signal after denoising.

5) Note that the conclusions given above for the file FO are in perfect agreement with conclusions for other
four files.
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The results for N=32 are presented in Fig.4. Here, the analysis leads to the same conclusions with the only
exception. For SNR;,, equal to 0 and 5 dB, the combined thresholding does not lead to better results than hard
thresholding. Meanwhile, despite PESQ improvement, the speech signal quality remains poor. Compared to N=16

(Fig. 3), the results for N=32 have improved.

Finally, Fig. 5 gives the dependences for N=64. For them, the conclusions are the same as above. Meanwhile,
the filtering efficiency is better than for N=16 and N=32. Consider a particular case of SNRi,,;=15 dB. For the hard
thresholding with B=3, one has PESQ=2.60 for N=16, 2.73 for N=32, and 2.89 for N=64. For the combined

thresholding with =7, we have PESQ=2.81 for N=16, 3.15 for N=32, and 3.22 for N=64.

To partly prove the conclusions, Fig. 6 presents the dependences for the file F1 for N=64. Here the advantages

of filtering with combined thresholding are even more obvious.

PESQ score for file FO, blocksize=16

a5 (red=0dB, green=5dB, blue=10dB, black=15dB, cyan=20dB)
. T T T T T T T

N
w”

MOS-LQO

N

1.5

2 3 4 5 6 7 8 9 10

Fig. 3. Dependences of PESQ on p (file F0) for five input SNRs and two threshold types, N=16

PESQ score for file FO, blocksize=32
(red=0dB, green=5dB, blue=10dB, black=15dB, cyan=20dB)

3.5F -

-~ — -

.......

MOS-LQC
N
()]
T

1 1 1 1 1 L 1 1
2 3 4 5 6 7 8 9 10
a8

Fig. 4. Dependences of PESQ on B (file F0) for five input SNRs and two threshold types, N=32
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PESQ score for file F0, blocksize=64
(red=0dB, green=5dB, blue=10dB, black=15dB, cyan=20dB)
T T T T T T T

3.5 -

MOS-LQO
N
W
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2 3 4 5 6 7 8 9 10
7]

Fig. 5. Dependences of PESQ on p (file F0) for five input SNRs and two threshold types, N=64

PESQ score for file F1, blocksize=64
(red=0dB, green=5dB, blue=10dB, black=15dB, cyan=20dB)
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Fig. 6. Dependences of PESQ on p (file F1) for five input SNRs and two threshold types, N=64

Let us also give some filtering examples. Fig. 7 presents a 0.5 s fragment of the test signal (noise-free and
noisy, SNRi,,=10 dB) as well as its filtered versions for N=32 and N=64 with hard and combined thresholding with
optimal . As seen, filtering is quite efficient in the sense of noise removal and signal preservation. However, the
filtering results for N=64 seem to be the best.
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Reference signal FO
I I T

T T T I
0.2 -1
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02+ .
| | | | | 1 1 1 |
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a)
Signal FO + noise, SNR = 10 dB
T T T T T T T T
0.2 B
0 i
0.2 B
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
T
| L | 1 | 1 L 1 |
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c)
Filtered signal FO, combined threshold, N = 32
T T T T T T
0.2 |
O Frbesmt e
-0.2- B
| 1 1 | | 1 1 1 |
0 0.05 0.1 0.15 0.2 0.256 0.3 0.35 04 0.45 0.5
d)
Filtered signal F0, combined threshold, N = 64
T T T T T T
| 1 | 1 | 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
e)
Filtered signal FO, combined threshold, N = 64
T T T I T T T T
0.2 -
0 Tl
0.2 1
| | | | | 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

f)

Fig. 7. Time diagrams of the F0 signal processing. a) - reference, b) - signal + noise (SNR =10dB), c) - filtered signal (N = 32, hard
threshold, g = 3.0), d) - filtered signal (N = 32, combined threshold, p = 4.8), e) - filtered signal (N = 64, hard threshold, = 2.8), f) -

Conclusions

filtered signal (N = 64, combined threshold, = 4.6)

In this paper, we have considered the task of denoising the speech audio signals contaminated by AWGN.
Different versions of 1-D DCT-based filtering with fully overlapping blocks have been studied. It is shown that the
use of the block size N=64 is preferable. According to the PESQ metric, the combined thresholding with B=7 is
preferable. Meanwhile, according to ISNR, both filtering approaches produce approximately the same results where
the optimal B for the combined thresholding is smaller (about 5). This opens the room for adaptation to input SNR

and signal complexity. Besides, other perception quality metrics are worth considering.
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