
 Технічні науки ISSN 2307-5732

Вісник Хмельницького національного університету, №4 2025 (355)

357

https://doi.org/10.31891/2307-5732-2025-355- 51

УДК 004
MALETSKYI DENYS

Lviv Polytechnic National University

https://orcid.org/0009-0003-1685-0472
e-mail: denys.y.maletskyi@lpnu.ua

VYKLYUK YAROSLAV
Lviv Polytechnic National University

https://orcid.org/0000-0003-4766-4659
e-mail: vyklyuk@ukr.net

LI FENGPING
Zhejiang Lab For Regenerative Medicine

https://orcid.org/0000-0002-8535-112X

e-mail: fpli@ojlab.ac.cn

EXPLORING 3D MESH COMPRESSION: METHODS, TRADE-OFFS, AND

APPLICATIONS

Three-dimensional (3D) mesh compression has become increasingly important across a range of fields—from virtual

and augmented reality to computer-aided design, gaming, and large-scale scientific visualization—where both storage constraints

and real-time rendering demands continue to escalate. As 3D models grow in complexity and resolution, efficient compression

becomes critical for enabling smooth interaction, fast transmission, and scalable visualization on modern hardware. This paper

provides a structured overview of the primary categories of 3D mesh compression techniques: single-rate compression, progressive

compression, random-accessible compression, and hybrid approaches that combine progressive refinement with selective

decoding. Single-rate methods offer compact, fixed-level encodings with simple and fast decoding pipelines, though they lack

adaptability in dynamic scenarios. Progressive methods construct a coarse-to-fine hierarchy, allowing for level-of-detail

management and gradual refinement during streaming or transmission. Random accessible techniques emphasize localized

decoding, enabling targeted access to specific mesh regions without decompressing the entire model—useful in interactive or

memory-limited settings. Hybrid approaches merge these advantages, supporting both progressive reconstruction and partial

access for highly responsive performance. The paper also briefly considers recent advances in neural-based compression, which

offer adaptive, data-driven encoding schemes that could further enhance compression efficiency. Based on this survey, we conclude

that progressive and random accessible mesh compression methods offer the most practical benefits for real-world applications

that require real-time responsiveness and efficient resource usage. These approaches show strong potential and should be the

focus of future research and optimization.

Keywords: data compression, mesh compression, computer graphics.

МАЛЕЦЬКИЙ ДЕНИС, ВИКЛЮК ЯРОСЛАВ
Національний університет «Львівська політехніка»

ФЕНГПІНГ ЛІ
Чжецзянська лабораторія регенеративної медицини

ДОСЛІДЖЕННЯ СТИСНЕННЯ 3D-МОДЕЛЕЙ: МЕТОДИ, КОМПРОМІСИ ТА СФЕРИ

ЗАСТОСУВАННЯ

Стиснення тривимірних (3Д) моделей набуває дедалі більшого значення в різноманітних галузях — від віртуальної та

доповненої реальності до автоматизованого проєктування, ігор та великомасштабної наукової візуалізації — де постійно зростають
вимоги до зберігання даних і рендерингу в реальному часі. Зі збільшенням складності та роздільної здатності моделей ефективні методи

стиснення стають критично важливими для забезпечення швидкої взаємодії, передачі та масштабованого візуального відображення

на сучасному обладнанні. У статті подано структурований огляд основних категорій методів стиснення 3D-мешів: одноразове (single-
rate) стиснення, прогресивне стиснення, стиснення з довільним доступом (random accessible), а також гібридні підходи, що поєднують

прогресивне вдосконалення з вибірковим декодуванням. Одноразові методи забезпечують компактне кодування з фіксованим рівнем

деталізації та швидким декодуванням, однак обмежені в гнучкості. Прогресивні методи формують ієрархію від грубого до точного
відтворення, що дозволяє керувати рівнями деталізації та поступовим завантаженням. Методи з довільним доступом орієнтовані на

часткове декодування, що дає змогу обробляти лише потрібні частини моделі без завантаження її повністю — це особливо корисно у

взаємодіючих або обмежених за ресурсами середовищах. Гібридні підходи об'єднують ці переваги, забезпечуючи як поступове
відновлення, так і вибірковий доступ для досягнення високої адаптивності в режимі реального часу. У статті також коротко

розглянуто новітні досягнення у сфері стиснення, заснованого на нейронних мережах, які відкривають перспективи адаптивного,
орієнтованого на дані кодування. На основі проведеного аналізу зроблено висновок, що прогресивне стиснення та методи з довільним

доступом мають найбільші практичні переваги для реальних завдань, які потребують інтерактивності та ефективного використання

ресурсів. Саме ці підходи слід розглядати як пріоритетні напрями подальших досліджень і вдосконалення.
Ключові слова: стиснення данних, стиснення моделей, комп’ютерна графіка.

Стаття надійшла до редакції / Received 27.05.2025

Прийнята до друку / Accepted 26.06.2025

Introduction

Three-dimensional (3D) meshes serve as a fundamental representation for digital geometry across numerous

industries, from entertainment and virtual reality to engineering and medical imaging. As these applications continue

to grow and demand ever larger, more detailed models, efficient compression methods have become critical to store,

https://orcid.org/0009-0003-1685-0472
mailto:denys.y.maletskyi@lpnu.ua
https://orcid.org/0000-0003-4766-4659
mailto:vyklyuk@ukr.net
https://orcid.org/0000-0002-8535-112X
mailto:fpli@ojlab.ac.cn

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

358

transmit, and render these massive datasets. High compression ratios can drastically reduce bandwidth and storage

requirements, yet preserving critical geometric and topological details remains imperative, particularly for domains

such as CAD or healthcare, where inaccuracies can compromise downstream tasks.

Over the past several decades, researchers have advanced a variety of strategies to tackle the unique

challenges of 3D mesh compression. Early techniques focused on reordering and quantizing mesh data, whereas more

sophisticated algorithms introduced predictor-based and transform-domain methods, achieving higher compression

ratios at increasingly manageable error levels. Progressive and random-accessible approaches further enable selective

or incremental loading and refinement of complex meshes, striking a balance between efficient data storage and real-

time responsiveness. As the field moves forward, hybrid solutions and hardware-friendly formats—often leveraging

novel data structures or even neural networks—continue to push the boundaries of mesh compression, aiming for

scalable performance without compromising on fidelity or flexibility. This paper surveys a wide range of these

approaches, evaluating their compression rates, quality retention, and decompression times across different use cases

and constraints.

Overview of 3D Mesh Compression

Mesh compression seeks to encode the vertices, faces, and connectivity of a 3D object in as few bits as

possible, while retaining sufficient fidelity for the target application. This is crucial in areas such as gaming, computer-

aided design, and medical visualization, where high-polygon models can quickly exceed memory and bandwidth

limits. At its core, a compressed mesh stores information about geometry (vertex positions) and topology (connectivity

among vertices and faces), with optional attributes like normals, textures, or per-vertex colors also subject to

compression.

Over the years, a variety of compression paradigms have emerged, each trading off between storage

efficiency, reconstruction quality, and the ability to decode portions of the data on demand. In this article, we divide

the discussion into four major categories. Single-rate mesh compression techniques (Section 3.1) deliver a one-shot

encoding of the mesh at a fixed resolution and are often lauded for simplicity and strong baseline ratios. Progressive

Meshes Compression (Section 3.2) builds a coarse-to-fine representation, allowing real-time level-of-detail (LOD)

control. Random Accessible Mesh Compression (Section 3.3) emphasizes localized or partial decoding, enabling on-

demand retrieval of specific regions without decompressing the entire model. Finally, progressive and random

accessible mesh compression approaches (Section 3.4) unify these objectives, permitting coarse-to-fine refinement

while also supporting region-based access. Each category tackles different practical requirements, from storing

massive static models to seamlessly streaming geometry in real-time interactive applications.

Methods for Compression

1. Single-rate mesh compression.

One of the earliest strategies to reduce 3D mesh storage while preserving exact connectivity and geometry

involves reorganizing mesh triangles into “strips.” A triangle strip is a sequential arrangement of connected triangles

that share edges, so each new triangle (after the initial one) is specified by just one new vertex. This concept reduces

redundancy by omitting repeated edge references [1], [2], [3]. In parallel, a straightforward way to lower geometric

precision without fundamentally altering connectivity is to quantize vertex coordinates. Although often a slightly

“lossy” step (due to rounding), coarse quantization can be avoided by choosing a sufficiently high bit resolution. In

practice, 16 bits or 24 bits per coordinate can maintain full visual fidelity in many applications, thus serving effectively

as a near-lossless or visually lossless strategy [4], [5].

Building on these ideas, Michael Deering proposed more flexible schemes, often called generalized triangle

strips or generalized triangle meshes [3]. Rather than requiring strictly contiguous strips of triangles, these methods

accommodate broader connectivity patterns with fewer state changes. By minimizing repeated indexing for shared

edges and vertices, they can further reduce storage overhead. A subsequent leap in lossless geometry compression

came from predictor-based algorithms, which encode each new vertex by predicting its position from already decoded

neighbors and then compress the difference rather than storing absolute coordinates. Early predictive methods by

Gabriel Taubin and Jarek Rossignac demonstrated how local neighborhood information can significantly cut

redundancy in vertex data, while Touma and Gotsman introduced the parallelogram predictor [6] to estimate a vertex’s

coordinates from two adjacent edges. Such residual-based coding preserves precise geometry as long as prediction

errors are stored exactly.

Connectivity—the graph describing how vertices and faces connect—also benefits from specialized

compression. Edgebreaker [7] systematically “peels” faces and labels each triangle with a simple symbol (C, L, E, R,

S) to reduce topological data. Valence-driven connectivity [8] leverages the fact that most meshes exhibit a predictable

distribution of vertex valences, achieving high compression ratios without sacrificing any mesh structure. Beyond

these strategies, several influential methods operate in a transform domain or use space-partitioning. For instance,

Karni and Gotsman [9] transform vertex coordinates into the mesh’s frequency domain via the graph Laplacian; high-

frequency components can be truncated or quantized, yielding more compact data. Guskov and Khodakovsky [10]

similarly employ wavelet transforms to exploit temporal and spatial coherence, encoding both geometry and

connectivity with significant space savings. Lengyel et al. [11] extend spectral methods by reusing a fixed set of basis

functions, speeding up certain computations while retaining many benefits (and computational costs) of frequency-

based approaches.

 Технічні науки ISSN 2307-5732

Вісник Хмельницького національного університету, №4 2025 (355)

359

For extremely large models, the CHuMI Viewer (“Compressive Huge Mesh Interactive Viewer”) [12] uses

a kd-tree (or nSP-tree) to partition coordinate space. This organization allows localized geometry storage and precision

adaptation per region, facilitating interactive streaming for meshes with hundreds of millions of polygons. New

connectivity-centric methods continue to appear, such as the triangular matrix-based lossless compression algorithm

[13], which arranges faces in a matrix structure to exploit planar graph properties, reducing the bits required for storing

complex connectivity, though geometry typically still relies on additional compression techniques. Meanwhile,

dynamic meshes—where geometry or connectivity changes over time—can also be compressed using hierarchical

displacement encoding. Song, Kang, and Jung in “Hierarchical Arithmetic Coding of Displacements for Dynamic

Mesh Compression” [14] describe a method that refines vertex positions at each level with small displacements, then

entropy-codes these displacements via arithmetic coding. By focusing on incremental updates to a stable base

configuration, it efficiently stores per-frame offsets and can be extended to near-lossless or lossy compression while

preserving accurate vertex motion.

2. Progressive Meshes Compression

A key challenge when rendering large-scale 3D models is efficiently transmitting and processing geometry

at different levels of detail (LOD). Progressive meshes address this by delivering a coarse-to-fine representation, so a

client or renderer starts with a simplified mesh and refines it incrementally only as needed—an advantage for distance

culling or real-time LOD adjustments. Hoppe’s seminal work, “Progressive Meshes” [15], introduced a scheme that

begins with a heavily simplified base mesh and reintroduces detail through vertex-split operations. Each split restores

collapsed vertices and faces, yielding a continuous LOD pipeline with manageable storage. He later refined this

method in “View-Dependent Refinement of Progressive Meshes” [16], targeting only camera-facing or visually

significant regions for higher resolution, thereby preserving performance by leaving other areas coarser.

Taubin, Gueziec, Horn, and Lazarus proposed Progressive Forest Split Compression [17] to reorganize a

sequence of split operations into a “forest” of spanning trees. Each tree references a sub-region of the mesh, revealing

partial structure at each refinement step. This forest-based method efficiently encodes both geometry and connectivity

changes while maintaining the key benefits of progressive retrieval. Pajarola and Rossignac’s Compressed Progressive

Meshes [18] further build on Hoppe’s concept, adding batching of vertex splits and sophisticated geometry predictors

(e.g., butterfly schemes) to push compression ratios higher. By separately storing geometry deltas from the

connectivity stream, they also enable distinct encoding strategies tailored to each data type.

Another thread of research involves wavelet transforms, as demonstrated by Valette and Prost in “A Wavelet-

Based Progressive Compression Scheme For Triangle Meshes: Wavemesh”[19]. By decomposing the surface into

frequency bands, they send high-frequency details last or omit them at ithe nitial stages. This approach offers

flexibility in managing bandwidth, as users can stop decoding at an acceptable quality level or continue until the mesh

is fully refined. Meanwhile, Progressive Lossless Mesh Compression via Incremental Parametric Refinement [20]

guarantees exact reconstruction without geometric or topological errors by incrementally refining a parametric domain

mapped to the mesh. Although more computationally demanding than simpler progressive schemes, it ensures that

each newly introduced vertex or face accurately matches the original model, preserving an entirely lossless

progression.

3. Random Accessible Mesh Compression

Random accessible mesh compression techniques prioritize partial or on-demand decoding of only those

regions needed at any given time. Streaming Meshes [21] initially demonstrated how reorganizing faces and vertices

into small, sequentially processed chunks reduces cache misses and avoids loading the entire mesh into memory.

Building on this idea, Streaming Compression of Triangle Meshes [22] applies compression within each chunk,

creating independently decodable stream units and thereby supporting interactive visualization of specific regions

based on view or priority.

Other approaches strengthen random access by introducing explicit indexing for each compressed data block,

as in Random-Accessible Compressed Triangle Meshes [23], ensuring near-constant time decompression of faces

upon request. Mesh Chartification [24] pushes this further by dividing the model into independently compressible

“charts.” Each chart maintains localized connectivity and boundary information through a base wire mesh, so any

specific portion can be decoded on-demand with little overhead—an asset for large-scale or distributed rendering. An

emerging direction is meshlet-based compression, highlighted by “Towards Practical Meshlet Compression” [25],

which encodes small, GPU-friendly clusters of faces (meshlets). Each meshlet can be selectively loaded and

decompressed, aligning well with modern rendering pipelines’ culling and shading strategies. Finally, Neural

Geometry Fields for Meshes [26] adopt a learning-based approach, training a neural network to reconstruct geometry

from compact latent representations. Although inference is more computationally intensive, it can capture shared

features across multiple shapes, potentially enabling partial reconstruction or advanced editing and style transfers.

4. Progressive and random accessible mesh compression

While progressive mesh algorithms primarily focus on coarse-to-fine refinements and random accessible

schemes emphasize localized decoding, there are hybrid approaches designed to merge both capabilities. By doing so,

they allow on-demand loading and viewing at multiple levels of detail while also supporting selective decompression

of specific regions. This combination is especially beneficial for large-scale or distributed 3D pipelines where it is

crucial to minimize memory usage, data transfer, and rendering latency.

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

360

A representative method, POMAR (Compression of Progressive Oriented Meshes Accessible Randomly)

[27], enables stepwise refinements while preserving random access to any region at a chosen LOD. It tracks oriented

patches and their subdivision history, encoding global connectivity updates alongside local geometry changes in a

manner that supports immediate retrieval of coarse overviews or selective refinement of high-detail areas. This dual

capability is vital for real-time visualization, where resources are limited or user-driven exploration requires rapid

focus on different parts of the model.

Multiresolution Random Accessible Mesh Compression [28] pursues similar goals by coupling progressive-

like encoding with random-access chunking. Each chunk encapsulates localized geometry and connectivity details,

letting interactive systems load only the relevant segments at higher resolutions. Although this hierarchical

organization imposes overhead, it can markedly improve real-time performance for large models.

Additional research continues to refine these dual strategies. For example, Balsa Rodriguez, Gobbetti, and

Pajarola [29] describe a compression-domain random-access framework integrating view-dependent rendering with

partial loading of polygonal data. Collectively, these techniques strive to reduce data footprints and decoding costs

without sacrificing either the flexibility of refined detail or the responsiveness of targeted decompression—key

requirements in large-scale 3D visualization and interactive graphics.

Comparative Analysis

Below is a two-part examination of the methods presented in Sections 3.1 through 3.4, focusing on three key

evaluation metrics - compression ratio, quality retention, and computational efficiency - followed by a comparison

table summarizing their performance characteristics. We conclude with a discussion of the main trade-offs and

considerations when choosing among these methods.

1. Evaluation Metrics

Assessing 3D mesh compression typically involves quantifiable metrics that capture compression ratio,

quality retention, and computational efficiency. Below are representative formulas illustrating how these metrics are

often expressed.

Compression Ratio

A fundamental measure is the compression ratio, which indicates the factor by which data is reduced. Let

Soriginal be the size of the uncompressed data (in bits or bytes) and Scompressed be the size of the compressed data.

Then the compression ratio R can be defined as:

𝑅 =
 𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑆𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
 , (1)

Alternatively, in bits per vertex (bpv) notation, one may track:

𝑏𝑝𝑣 =
𝑆𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝑛
, (2)

where n is the number of vertices. Traditional geometry compression can yield tens of bpv for the geometry

component (after quantization and entropy coding), while connectivity can reach single-digit bpv. Predictive or

transform-based methods often push these numbers lower, depending on mesh smoothness, connectivity complexity,

and whether partial or full decompression is required.

Quality Retention

Quality or distortion measures how closely the reconstructed mesh approximates the original. One common

metric is the root mean square (RMS) error between corresponding vertex positions:

𝑅𝑀𝑆 = √
1

𝑛
 ∑𝑛𝑖 = 1 ||𝑣𝑖 − 𝑣𝑖̃ ||

2
, (3)

where 𝑣𝑖 is the original vertex position and 𝑣𝑖̃ is the decoded vertex.

Computational Efficiency

Practical usage often depends on measuring the time required to compress and decompress a 3D mesh, as

well as the memory resources involved. Compression time reflects how long it takes to reduce a model to its

compressed form, whereas decompression time indicates how quickly that model can be reconstructed for rendering

or processing. Both metrics depend on factors such as algorithmic complexity, implementation details, and the degree

of hardware parallelism or acceleration available.

Memory usage also plays a significant role. Some methods, particularly those based on blocks or charts, can

process only a portion of the mesh in memory at any one time, thereby reducing overall system demands. Approaches

that enable on-demand loading, such as streaming or progressive schemes, can further lower peak memory

requirements by unloading data that is no longer needed. In the end, an ideal compression algorithm balances a high

reduction in data size with short encode and decode times and minimal memory consumption, especially for large-

scale or real-time 3D environments.

2. Comparison Table

Below is a concise, qualitative table comparing representative methods from single-rate, progressive, and

random accessible categories. Each category’s entries capture the approach’s typical performance with respect to our

three metrics.

 Технічні науки ISSN 2307-5732

Вісник Хмельницького національного університету, №4 2025 (355)

361

Table 1

Comparison table of various mesh compression techniques

Approach Approx. Compression

Rate (bpv or ratio)

Quality Decompression Time

Triangle Strips & Vertex

Quantization

(Clark; Foley et al.;

Deering)

~10–30 bpv total

(geometry + connectivity)

Near-lossless if 16–24 bits

per coordinate.

(some rounding)

Low (simple indexing +

coordinate scaling)

Generalized Triangle Strips

(Deering)

Similar or slightly better

than basic strips (~8–25

bpv)

Near-lossless with

adequate quantization

Low–Moderate

(managing larger vertex

buffer)

Predictor-Based

(Taubin, Rossignac;

Touma & Gotsman)

Can drop to ~5–20 bpv,

depending on the mesh

Lossless if no extra

quantization

(storing residuals exactly)

Low–Moderate

(predictor decoding +

entropy)

Edgebreaker

(Rossignac)

Connectivity ~2–4

bits/triangle; geometry

separate, total ~8–25 bpv

Lossless topology

(no distortion in

connectivity)

Low (straightforward

symbol decoding)

Valence-Driven

Connectivity

(Alliez & Desbrun)

Connectivity ~1–3

bits/triangle; geometry

separate, total ~8–25 bpv

Lossless connectivity Low–Moderate (valence-

based reconstruction)

Spectral Mesh

Compression

(Karni & Gotsman)

~10–40 bpv (varies

with frequency truncation)

Tunable from near-lossless

to lossy

(dropping high-frequency

bands)

Moderate–High

(inverse spectral

transform)

Wavelet (Parametric

Sequences)

(Guskov & Khodakovsky)

~15–50 bpv (coherent

animations

can see higher gains)

Tunable; can discard higher

wavelet coefficients

Moderate–High (multi-

level wavelet decoding)

3D Mesh Compression

Using Fixed Spectral

Bases

(Lengyel et al.)

~10–30 bpv

(similar to general spectral)

Adjustable—can truncate

high-frequency

components

Moderate–High (fixed

basis reconstruction)

CHuMI Viewer

(Local kd-tree Partitioning)

~10–40 bpv overall

(massive models)

Usually near-lossless

(adaptive bit precision)

Moderate (block-based

decode + precision

checks)

Triangular Matrix-Based

Lossless

(He et al.)

Connectivity <5–10 bpv,

geometry separate, total

~14–35 bpv

Lossless connectivity Low–Moderate (matrix

traversal and vertex

binding)

Hierarchical Arithmetic

Coding

(Song et al.)

(Dynamic Displacements)

~10–30 bpv per frame

Near-lossless or lossy

(depends on quantization)

Moderate (arithmetic

decoding of

displacements)

Hoppe’s Progressive

Meshes

~8–20 bpv once fully

refined

Near-lossless or visually

lossless

Low–Moderate (vertex-

split decoding)

View-Dependent

Refinement

(Hoppe)

~8–20 bpv, but

partial refinement

Region-specific fidelity Moderate (dynamic LOD

logic)

Progressive Forest Split

(Taubin et al.)

~10–25 bpv Lossless connectivity;

geometry can be near-

lossless

Low–Moderate

(decoding forest updates)

Compressed Progressive

Meshes

(Pajarola & Rossignac)

~15–30 bpv Near-lossless if

quantization is fine

Moderate (batch

processing + predictor

decode)

Wavelet-Based Progressive

(Alliez & Desbrun)

~15–40 bpv Tunable; can omit

high-frequency detail

Moderate–High

(wavelet-based

refinement)

Progressive Parametric

(Ibarria et al.)

~8–20 bpv (fully lossless) Exactly lossless

(no geometric errors)

High (incremental

parametric domain

building)

Streaming Meshes

(Isenburg & Lindstrom)

~10–25 bpv (with optional

compression)

Can be lossless if geometry

is unquantized

Low–Moderate (chunk-

based streaming decode)

Streaming Compression

of
Triangle Meshes

~15–30 bpv Near-lossless if

quantization is modest

Moderate (chunk-level

decoding overhead)

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

362

Table 1 continuation

Approach Approx. Compression

Rate (bpv or ratio)

Quality Decompression Time

Random-Accessible

Compressed
Triangle

Meshes

~10–25 bpv Usually near-lossless

(geometry can be

quantized)

Moderate (indexing

overhead for random

access)

Mesh Chartification ~8–25 bpv Typically lossless

within each chart

Low–Moderate

(boundary references)

Meshlet Compression

(“Towards Practical…”)

~15–35 bpv Near-lossless with

quantized coordinates

Moderate (meshlet

structure decoding)

Neural Geometry Fields

(Liu et al.)

~20–100+ bpv

(can be extremely compact

if multi-shape)

Lossy; depends on the

network

inference accuracy

High (run-time neural

inference)

POMAR

(Progressive + Random

Access)

~12–30 bpv Near-lossless if

residuals stored exactly

Moderate–High (oriented

patch decode + partial

refine)

Multiresolution Random

Accessible

(Szymczak & Rossignac)

~10–30 bpv Near-lossless

(geometry can be

quantized)

Moderate (hierarchical

chunk decode)

Balsa Rodriguez et al.

(Random-Access &

Progressive)

~8–25 bpv (varies

by single-rate vs.

progressive)

Tunable fidelity, partial or

full LOD

Moderate (indexing +

LOD decode)

Discussion

1. Trade-offs for Single-Rate vs. Progressive.

Single-rate methods (e.g., triangle strips, generalized strips, predictor-based encoding, Edgebreaker)

generally deliver a one-shot reconstruction at a specific resolution. They excel in scenarios where the model is fully

downloaded or stored once and then rendered, offering straightforward implementations and high compression ratios.

Progressive approaches, by contrast, introduce a hierarchy of mesh representations. Although they often incur a slight

increase in storage overhead (due to metadata for splits or transformations), they enable level-of-detail (LOD) control

and more efficient streaming in contexts where partial or incremental viewing is desired.

2. Random Accessibility Benefits.

Random-accessible schemes partition the mesh into small, independently decodable units, making them

suitable for large models or applications where only parts of the mesh need to be viewed or edited at a time. This

partitioning, however, necessitates additional data structures (e.g., chunk boundaries, indexing tables, or chart cross-

references) that may slightly reduce overall compression efficiency or increase encoding/decoding complexity. In

return, they offer crucial benefits for out-of-core rendering pipelines, distributed computing environments, and any

interactive application that requires on-demand retrieval of geometry.

3. Combining Progressive and Random Accessibility.

When both progressive refinement and local decoding are required, methods like POMAR balance the ability

to selectively load details with the option to refine the entire mesh progressively. While these “hybrid” approaches

can involve the most complex data management (keeping track of partial LOD states, oriented patches, boundary

references, etc.), they allow flexible rendering in networked or resource-limited scenarios. The overhead from storing

both progressive and random accessible metadata is outweighed by the advantage of being able to retrieve specific

regions at different resolutions with minimal delay.

4. Choosing the Right Technique.

In practice, selecting a mesh compression algorithm depends on the target application, available bandwidth,

and computational resources. High-end engineering or medical contexts might favor near-lossless or lossless

approaches (predictor-based or specialized connectivity encoding) to preserve fidelity. Real-time rendering of large-

scale scenes may benefit more from random-accessible or progressive methods. Hybrid solutions should be considered

if both partial decoding and multiple LODs are integral to the workflow. Ultimately, understanding the interplay of

compression ratio, rendering performance, and implementation complexity is essential for choosing the best-suited

solution.

Applications and Future Trends

Progressive and random accessible mesh compression techniques hold significant promise for modern

rendering pipelines, where large datasets need to be visualized in real time across diverse platforms. By offering on-

demand access to specific regions of a model at varied levels of detail, these hybrid methods can efficiently

accommodate both local culling (e.g., dynamic frustum or distance-based) and global streaming. The random

accessibility component allows high parallelization on GPUs, as different segments of the mesh can be decoded

independently; this also lends itself to more effective load balancing and better exploitation of hardware resources.

 Технічні науки ISSN 2307-5732

Вісник Хмельницького національного університету, №4 2025 (355)

363

Meanwhile, the progressive aspect delivers real-time LOD adjustments that maintain performance even as scene

complexity and camera movements evolve.

Beyond real-time rendering, fields such as CAD, GIS, and medical imaging can benefit from partial-decoding

strategies to interact with large-scale or detailed models on constrained devices or networks. However, further research

is needed to optimize hybrid schemes that merge random-access chunking with multiresolution geometry encoding,

aiming to reduce overheads while preserving high fidelity. Neural network–based compression also remains an

exciting frontier: if the bottleneck of inference-heavy decompression can be mitigated or hybridized with more

traditional decoding techniques, these methods could offer exceptional compression ratios without sacrificing

interactive performance. By embedding neural fields or latent representations into a conventional mesh pipeline,

developers might achieve the best of both worlds: high compression rates from learned encodings and swift

decompression through GPU-friendly data structures or partial expansions. As hardware accelerators for AI continue

to advance, such solutions may soon become practical for a wide range of 3D applications, enabling sophisticated

geometry compression that is both scalable and fully responsive to real-time demands.

Conclusion
3D mesh compression has matured into a key enabler of interactive visualization, resource-efficient storage,

and high-fidelity rendering. As models grow in polygon count to capture intricate details demanded by applications

such as virtual reality, product design, and remote collaboration, the pressure on both data transmission and real-time

rendering pipelines intensifies. In response, researchers have developed a spectrum of methods ranging from

straightforward single-rate compression, where a fixed, highly optimized encoding is generated for a particular

resolution, to elaborate, multi-stage processes that allow selective, progressive, or random-access decoding. Each

technique trades off distinct factors: compression ratio, computational overhead, memory usage, and the final quality

of reconstruction.

Single-rate solutions often excel at providing strong baseline ratios while maintaining relatively simple

decode paths, making them suitable for static environments or offline scenarios. Progressive approaches, by contrast,

supply a smooth path from coarse mesh versions to full detail, supporting real-time level-of-detail (LOD) adjustments

that help keep rendering workloads manageable. Random accessible schemes address the need to retrieve only subsets

of a model, a boon for limited-memory or bandwidth-constrained scenarios and for large-scale virtual environments

where only certain sections of geometry are relevant at any given moment. When combined, progressive and random

accessible methods can unlock unprecedented flexibility, letting users not only refine in stages but also decode

precisely the regions of interest in high detail, all without a full model load.

Amid these established paradigms, the integration of neural network–based compression represents a

burgeoning frontier. Such strategies can yield remarkable data reductions by leveraging learned feature

representations, particularly when multiple meshes share structural similarities. However, practical deployment hinges

on lowering the decoding latency inherent in neural inference. Future research may converge on hybrid methods that

store latent codes in a neural format while capitalizing on proven, GPU-friendly partial decoding techniques. By

optimizing this balance, developers may achieve the twin goals of deep compression and real-time responsiveness.

Looking ahead, mesh compression is poised to remain a vital research area. Industrial and academic

applications will demand ever more efficient encodings—both to fit the constraints of mobile devices, web platforms,

or immersive headsets, and to streamline cross-platform content creation pipelines. Additionally, with the anticipated

growth of metaverse-like experiences and volumetric capture, new compression challenges will emerge, pushing

existing algorithms to adapt or inspiring wholly novel solutions. While no single scheme can claim universal

dominance, the collective body of techniques discussed here—single-rate, progressive, random accessible, and

hybrid—will serve as a robust toolkit, guiding users toward the approach best suited to their fidelity requirements,

performance objectives, and evolving hardware capabilities.

References

1. Clark J.H. Hierarchical geometric models for visible-surface algorithms / J.H. Clark // SIGGRAPH ’76.

– 1976. – P. 267.

2. Land R., Foley J.D., Dam A.V. Fundamentals of Interactive Computer Graphics / R. Land, J.D. Foley,

A.V. Dam // Leonardo. – 1984. – P. 59.

3. Deering M. Geometry compression / M. Deering // Proceedings of SIGGRAPH ’95. – ACM Press, 1995.

– P. 13–20.

4. Chow M.M. Optimized geometry compression for real-time rendering / M.M. Chow // Proceedings

Visualization ’97. – 1997. – P. 347–354.

5. Rossignac J. Edgebreaker: connectivity compression for triangle meshes / J. Rossignac // IEEE

Transactions on Visualization and Computer Graphics. – 1999. – Vol. 5, № 1. – P. 47–61.

6. Alliez P., Desbrun M. Valence-Driven Connectivity Encoding for 3D Meshes / P. Alliez, M. Desbrun //

Computer Graphics Forum. – 2001. – Vol. 20, № 3. – P. 480–489.

7. Guskov I., Khodakovsky A. Wavelet compression of parametrically coherent mesh sequences / I. Guskov,

A. Khodakovsky // Proceedings of SCA ’04. – 2004. – P. 183.

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

364

8. Valette S., Prost R. A Wavelet-Based Progressive Compression Scheme For Triangle Meshes: Wavemesh

/ S. Valette, R. Prost // IEEE Transactions on Visualization and Computer Graphics. – 2004. – Vol. 10. – P. 123–129.

9. Isenburg M., Lindstrom P. Streaming meshes / M. Isenburg, P. Lindstrom. – 2005. – P. 238.

10. Maglo A., Grimstead I., Hudelot C. POMAR: Compression of progressive oriented meshes accessible

randomly / A. Maglo, I. Grimstead, C. Hudelot // Computers & Graphics. – 2013. – Vol. 37, № 6. – P. 743–752.

11. Karni Z., Gotsman C. 3D Mesh Compression Using Fixed Spectral Bases / Z. Karni, C. Gotsman. – [Без

вихідних даних].

12. CHuMI Viewer: Compressive Huge Mesh Interactive Viewer. – 2024. – ResearchGate. – DOI:

10.1016/j.cag.2009.03.029.

13. Balreira D., da Silveira T. Triangular matrix-based lossless compression algorithm for 3D mesh

connectivity / D. Balreira, T. da Silveira // The Visual Computer. – 2024. – Vol. 40. – DOI: 10.1007/s00371-024-

03400-8.

14. Nishimura H., Kato H., Kawamura K. Hierarchical Arithmetic Coding of Displacements for Dynamic

Mesh Compression / H. Nishimura, H. Kato, K. Kawamura. – 2023. – P. 2854. – DOI:

10.1109/ICIP49359.2023.10222117.

15. Hoppe H. Progressive meshes / H. Hoppe. – [Без вихідних даних].

16. Hoppe H. View-dependent refinement of progressive meshes / H. Hoppe // SIGGRAPH ’97. – ACM

Press, 1997. – P. 189–198.

17. Progressive Forest Split Compression. – ResearchGate. – Accessed: Jan. 23, 2025. – [Online]. Available:

https://www.researchgate.net/publication/2497716_Progressive_Forest_Split_Compression

18. Pajarola R., Rossignac J. Compressed Progressive Meshes / R. Pajarola, J. Rossignac // IEEE Transactions

on Visualization and Computer Graphics. – 2000. – Vol. 6. – P. 79–93.

19. Valette S., Prost R. A Wavelet-Based Progressive Compression Scheme For Triangle Meshes: Wavemesh

/ S. Valette, R. Prost // IEEE Transactions on Visualization and Computer Graphics. – 2004. – Vol. 10. – P. 123–129.

20. Valette S., Chaine R., Prost R. Progressive Lossless Mesh Compression Via Incremental Parametric

Refinement / S. Valette, R. Chaine, R. Prost. – 2009. – [Online]. Available: https://doi.org/10.1111/j.1467-

8659.2009.01507.x

21. Isenburg M., Lindstrom P. Streaming meshes / M. Isenburg, P. Lindstrom. – 2005. – P. 238. – DOI:

10.1109/VISUAL.2005.1532800.

22. Isenburg M., Lindstrom P., Snoeyink J. Streaming compression of triangle meshes / M. Isenburg, P.

Lindstrom, J. Snoeyink // SIGGRAPH ’05. – ACM Press, 2005. – P. 136.

23. Random-Accessible Compressed Triangle Meshes. – ResearchGate. – Oct. 2024. – DOI:

10.1109/TVCG.2007.70585.

24. Random Accessible Mesh Compression Using Mesh Chartification. – ResearchGate. – Accessed: Jan. 28,

2025. – [Online]. Available:

https://www.researchgate.net/publication/23472936_Random_Accessible_Mesh_Compression_Using_Mesh_Charti

fication

25. Kuth B. et al. Towards Practical Meshlet Compression / B. Kuth et al. – 2024. – arXiv:2404.06359. –

[Online]. Available: http://arxiv.org/abs/2404.06359

26. Edavamadathil Sivaram V., Li T.-M., Ramamoorthi R. Neural Geometry Fields For Meshes / V.

Edavamadathil Sivaram, T.-M. Li, R. Ramamoorthi // SIGGRAPH Conference Papers ’24. – ACM, 2024. – P. 1–11.

27. Maglo A., Grimstead I., Hudelot C. POMAR: Compression of progressive oriented meshes accessible

randomly / A. Maglo, I. Grimstead, C. Hudelot // Computers & Graphics. – 2013. – Vol. 37, № 6. – P. 743–752.

28. Kim J., Choe S., Lee S. Multiresolution Random Accessible Mesh Compression / J. Kim, S. Choe, S. Lee

// Computer Graphics Forum. – 2006. – Vol. 25, № 3. – P. 323–331.

29. Balsa Rodríguez M. et al. State-of-the-Art in Compressed GPU-Based Direct Volume Rendering / M.

Balsa Rodríguez et al. // Computer Graphics Forum. – 2014. – Vol. 33, № 6. – P. 77–100.

https://www.researchgate.net/publication/2497716_Progressive_Forest_Split_Compression
https://www.researchgate.net/publication/2497716_Progressive_Forest_Split_Compression
https://www.researchgate.net/publication/2497716_Progressive_Forest_Split_Compression
https://doi.org/10.1111/j.1467-8659.2009.01507.x
https://doi.org/10.1111/j.1467-8659.2009.01507.x
https://doi.org/10.1111/j.1467-8659.2009.01507.x
https://www.researchgate.net/publication/23472936_Random_Accessible_Mesh_Compression_Using_Mesh_Chartification
https://www.researchgate.net/publication/23472936_Random_Accessible_Mesh_Compression_Using_Mesh_Chartification
https://www.researchgate.net/publication/23472936_Random_Accessible_Mesh_Compression_Using_Mesh_Chartification
https://www.researchgate.net/publication/23472936_Random_Accessible_Mesh_Compression_Using_Mesh_Chartification
http://arxiv.org/abs/2404.06359
http://arxiv.org/abs/2404.06359

