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EXPLORING 3D MESH COMPRESSION: METHODS, TRADE-OFFS, AND 

APPLICATIONS 
 
Three-dimensional (3D) mesh compression has become increasingly important across a range of fields—from virtual 

and augmented reality to computer-aided design, gaming, and large-scale scientific visualization—where both storage constraints 

and real-time rendering demands continue to escalate. As 3D models grow in complexity and resolution, efficient compression 

becomes critical for enabling smooth interaction, fast transmission, and scalable visualization on modern hardware. This paper 

provides a structured overview of the primary categories of 3D mesh compression techniques: single-rate compression, progressive 

compression, random-accessible compression, and hybrid approaches that combine progressive refinement with selective 

decoding. Single-rate methods offer compact, fixed-level encodings with simple and fast decoding pipelines, though they lack 

adaptability in dynamic scenarios. Progressive methods construct a coarse-to-fine hierarchy, allowing for level-of-detail 

management and gradual refinement during streaming or transmission. Random accessible techniques emphasize localized 

decoding, enabling targeted access to specific mesh regions without decompressing the entire model—useful in interactive or 

memory-limited settings. Hybrid approaches merge these advantages, supporting both progressive reconstruction and partial 

access for highly responsive performance. The paper also briefly considers recent advances in neural-based compression, which 

offer adaptive, data-driven encoding schemes that could further enhance compression efficiency. Based on this survey, we conclude 

that progressive and random accessible mesh compression methods offer the most practical benefits for real-world applications 

that require real-time responsiveness and efficient resource usage. These approaches show strong potential and should be the 

focus of future research and optimization. 

Keywords:  data compression, mesh compression, computer graphics. 
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ДОСЛІДЖЕННЯ СТИСНЕННЯ 3D-МОДЕЛЕЙ: МЕТОДИ, КОМПРОМІСИ ТА СФЕРИ 

ЗАСТОСУВАННЯ 

 
Стиснення тривимірних (3Д) моделей набуває дедалі більшого значення в різноманітних галузях — від віртуальної та 

доповненої реальності до автоматизованого проєктування, ігор та великомасштабної наукової візуалізації — де постійно зростають 
вимоги до зберігання даних і рендерингу в реальному часі. Зі збільшенням складності та роздільної здатності моделей ефективні методи 

стиснення стають критично важливими для забезпечення швидкої взаємодії, передачі та масштабованого візуального відображення 

на сучасному обладнанні. У статті подано структурований огляд основних категорій методів стиснення 3D-мешів: одноразове (single-
rate) стиснення, прогресивне стиснення, стиснення з довільним доступом (random accessible), а також гібридні підходи, що поєднують 

прогресивне вдосконалення з вибірковим декодуванням. Одноразові методи забезпечують компактне кодування з фіксованим рівнем 

деталізації та швидким декодуванням, однак обмежені в гнучкості. Прогресивні методи формують ієрархію від грубого до точного 
відтворення, що дозволяє керувати рівнями деталізації та поступовим завантаженням. Методи з довільним доступом орієнтовані на 

часткове декодування, що дає змогу обробляти лише потрібні частини моделі без завантаження її повністю — це особливо корисно у 

взаємодіючих або обмежених за ресурсами середовищах. Гібридні підходи об'єднують ці переваги, забезпечуючи як поступове 
відновлення, так і вибірковий доступ для досягнення високої адаптивності в режимі реального часу. У статті також коротко 

розглянуто новітні досягнення у сфері стиснення, заснованого на нейронних мережах, які відкривають перспективи адаптивного, 
орієнтованого на дані кодування. На основі проведеного аналізу зроблено висновок, що прогресивне стиснення та методи з довільним 

доступом мають найбільші практичні переваги для реальних завдань, які потребують інтерактивності та ефективного використання 

ресурсів. Саме ці підходи слід розглядати як пріоритетні напрями подальших досліджень і вдосконалення. 
Ключові слова: стиснення данних, стиснення моделей, комп’ютерна графіка. 
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Introduction 

Three-dimensional (3D) meshes serve as a fundamental representation for digital geometry across numerous 

industries, from entertainment and virtual reality to engineering and medical imaging. As these applications continue 

to grow and demand ever larger, more detailed models, efficient compression methods have become critical to store, 
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transmit, and render these massive datasets. High compression ratios can drastically reduce bandwidth and storage 

requirements, yet preserving critical geometric and topological details remains imperative, particularly for domains 

such as CAD or healthcare, where inaccuracies can compromise downstream tasks. 

Over the past several decades, researchers have advanced a variety of strategies to tackle the unique 

challenges of 3D mesh compression. Early techniques focused on reordering and quantizing mesh data, whereas more 

sophisticated algorithms introduced predictor-based and transform-domain methods, achieving higher compression 

ratios at increasingly manageable error levels. Progressive and random-accessible approaches further enable selective 

or incremental loading and refinement of complex meshes, striking a balance between efficient data storage and real-

time responsiveness. As the field moves forward, hybrid solutions and hardware-friendly formats—often leveraging 

novel data structures or even neural networks—continue to push the boundaries of mesh compression, aiming for 

scalable performance without compromising on fidelity or flexibility. This paper surveys a wide range of these 

approaches, evaluating their compression rates, quality retention, and decompression times across different use cases 

and constraints. 

Overview of 3D Mesh Compression 

Mesh compression seeks to encode the vertices, faces, and connectivity of a 3D object in as few bits as 

possible, while retaining sufficient fidelity for the target application. This is crucial in areas such as gaming, computer-

aided design, and medical visualization, where high-polygon models can quickly exceed memory and bandwidth 

limits. At its core, a compressed mesh stores information about geometry (vertex positions) and topology (connectivity 

among vertices and faces), with optional attributes like normals, textures, or per-vertex colors also subject to 

compression. 

Over the years, a variety of compression paradigms have emerged, each trading off between storage 

efficiency, reconstruction quality, and the ability to decode portions of the data on demand. In this article, we divide 

the discussion into four major categories. Single-rate mesh compression techniques (Section 3.1) deliver a one-shot 

encoding of the mesh at a fixed resolution and are often lauded for simplicity and strong baseline ratios. Progressive 

Meshes Compression (Section 3.2) builds a coarse-to-fine representation, allowing real-time level-of-detail (LOD) 

control. Random Accessible Mesh Compression (Section 3.3) emphasizes localized or partial decoding, enabling on-

demand retrieval of specific regions without decompressing the entire model. Finally, progressive and random 

accessible mesh compression approaches (Section 3.4) unify these objectives, permitting coarse-to-fine refinement 

while also supporting region-based access. Each category tackles different practical requirements, from storing 

massive static models to seamlessly streaming geometry in real-time interactive applications. 

 

Methods for Compression 

1. Single-rate mesh compression. 

One of the earliest strategies to reduce 3D mesh storage while preserving exact connectivity and geometry 

involves reorganizing mesh triangles into “strips.” A triangle strip is a sequential arrangement of connected triangles 

that share edges, so each new triangle (after the initial one) is specified by just one new vertex. This concept reduces 

redundancy by omitting repeated edge references [1], [2], [3]. In parallel, a straightforward way to lower geometric 

precision without fundamentally altering connectivity is to quantize vertex coordinates. Although often a slightly 

“lossy” step (due to rounding), coarse quantization can be avoided by choosing a sufficiently high bit resolution. In 

practice, 16 bits or 24 bits per coordinate can maintain full visual fidelity in many applications, thus serving effectively 

as a near-lossless or visually lossless strategy [4], [5]. 

Building on these ideas, Michael Deering proposed more flexible schemes, often called generalized triangle 

strips or generalized triangle meshes [3]. Rather than requiring strictly contiguous strips of triangles, these methods 

accommodate broader connectivity patterns with fewer state changes. By minimizing repeated indexing for shared 

edges and vertices, they can further reduce storage overhead. A subsequent leap in lossless geometry compression 

came from predictor-based algorithms, which encode each new vertex by predicting its position from already decoded 

neighbors and then compress the difference rather than storing absolute coordinates. Early predictive methods by 

Gabriel Taubin and Jarek Rossignac demonstrated how local neighborhood information can significantly cut 

redundancy in vertex data, while Touma and Gotsman introduced the parallelogram predictor [6] to estimate a vertex’s 

coordinates from two adjacent edges. Such residual-based coding preserves precise geometry as long as prediction 

errors are stored exactly. 

Connectivity—the graph describing how vertices and faces connect—also benefits from specialized 

compression. Edgebreaker [7] systematically “peels” faces and labels each triangle with a simple symbol (C, L, E, R, 

S) to reduce topological data. Valence-driven connectivity [8] leverages the fact that most meshes exhibit a predictable 

distribution of vertex valences, achieving high compression ratios without sacrificing any mesh structure. Beyond 

these strategies, several influential methods operate in a transform domain or use space-partitioning. For instance, 

Karni and Gotsman [9] transform vertex coordinates into the mesh’s frequency domain via the graph Laplacian; high-

frequency components can be truncated or quantized, yielding more compact data. Guskov and Khodakovsky [10] 

similarly employ wavelet transforms to exploit temporal and spatial coherence, encoding both geometry and 

connectivity with significant space savings. Lengyel et al. [11] extend spectral methods by reusing a fixed set of basis 

functions, speeding up certain computations while retaining many benefits (and computational costs) of frequency-

based approaches. 
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For extremely large models, the CHuMI Viewer  (“Compressive Huge Mesh Interactive Viewer”) [12] uses 

a kd-tree (or nSP-tree) to partition coordinate space. This organization allows localized geometry storage and precision 

adaptation per region, facilitating interactive streaming for meshes with hundreds of millions of polygons. New 

connectivity-centric methods continue to appear, such as the triangular matrix-based lossless compression algorithm 

[13], which arranges faces in a matrix structure to exploit planar graph properties, reducing the bits required for storing 

complex connectivity, though geometry typically still relies on additional compression techniques. Meanwhile, 

dynamic meshes—where geometry or connectivity changes over time—can also be compressed using hierarchical 

displacement encoding. Song, Kang, and Jung in “Hierarchical Arithmetic Coding of Displacements for Dynamic 

Mesh Compression” [14] describe a method that refines vertex positions at each level with small displacements, then 

entropy-codes these displacements via arithmetic coding. By focusing on incremental updates to a stable base 

configuration, it efficiently stores per-frame offsets and can be extended to near-lossless or lossy compression while 

preserving accurate vertex motion. 

2. Progressive Meshes Compression 

A key challenge when rendering large-scale 3D models is efficiently transmitting and processing geometry 

at different levels of detail (LOD). Progressive meshes address this by delivering a coarse-to-fine representation, so a 

client or renderer starts with a simplified mesh and refines it incrementally only as needed—an advantage for distance 

culling or real-time LOD adjustments. Hoppe’s seminal work, “Progressive Meshes” [15], introduced a scheme that 

begins with a heavily simplified base mesh and reintroduces detail through vertex-split operations. Each split restores 

collapsed vertices and faces, yielding a continuous LOD pipeline with manageable storage. He later refined this 

method in “View-Dependent Refinement of Progressive Meshes” [16], targeting only camera-facing or visually 

significant regions for higher resolution, thereby preserving performance by leaving other areas coarser. 

Taubin, Gueziec, Horn, and Lazarus proposed Progressive Forest Split Compression [17] to reorganize a 

sequence of split operations into a “forest” of spanning trees. Each tree references a sub-region of the mesh, revealing 

partial structure at each refinement step. This forest-based method efficiently encodes both geometry and connectivity 

changes while maintaining the key benefits of progressive retrieval. Pajarola and Rossignac’s Compressed Progressive 

Meshes [18] further build on Hoppe’s concept, adding batching of vertex splits and sophisticated geometry predictors 

(e.g., butterfly schemes) to push compression ratios higher. By separately storing geometry deltas from the 

connectivity stream, they also enable distinct encoding strategies tailored to each data type. 

Another thread of research involves wavelet transforms, as demonstrated by Valette and Prost in “A Wavelet-

Based Progressive Compression Scheme For Triangle Meshes: Wavemesh”[19]. By decomposing the surface into 

frequency bands, they send high-frequency details last or omit them at ithe nitial stages. This approach offers 

flexibility in managing bandwidth, as users can stop decoding at an acceptable quality level or continue until the mesh 

is fully refined. Meanwhile, Progressive Lossless Mesh Compression via Incremental Parametric Refinement [20] 

guarantees exact reconstruction without geometric or topological errors by incrementally refining a parametric domain 

mapped to the mesh. Although more computationally demanding than simpler progressive schemes, it ensures that 

each newly introduced vertex or face accurately matches the original model, preserving an entirely lossless 

progression. 

3. Random Accessible Mesh Compression 

Random accessible mesh compression techniques prioritize partial or on-demand decoding of only those 

regions needed at any given time. Streaming Meshes [21] initially demonstrated how reorganizing faces and vertices 

into small, sequentially processed chunks reduces cache misses and avoids loading the entire mesh into memory. 

Building on this idea, Streaming Compression of Triangle Meshes [22] applies compression within each chunk, 

creating independently decodable stream units and thereby supporting interactive visualization of specific regions 

based on view or priority. 

Other approaches strengthen random access by introducing explicit indexing for each compressed data block, 

as in Random-Accessible Compressed Triangle Meshes [23], ensuring near-constant time decompression of faces 

upon request. Mesh Chartification [24] pushes this further by dividing the model into independently compressible 

“charts.” Each chart maintains localized connectivity and boundary information through a base wire mesh, so any 

specific portion can be decoded on-demand with little overhead—an asset for large-scale or distributed rendering. An 

emerging direction is meshlet-based compression, highlighted by “Towards Practical Meshlet Compression” [25], 

which encodes small, GPU-friendly clusters of faces (meshlets). Each meshlet can be selectively loaded and 

decompressed, aligning well with modern rendering pipelines’ culling and shading strategies. Finally, Neural 

Geometry Fields for Meshes [26] adopt a learning-based approach, training a neural network to reconstruct geometry 

from compact latent representations. Although inference is more computationally intensive, it can capture shared 

features across multiple shapes, potentially enabling partial reconstruction or advanced editing and style transfers. 

4. Progressive and random accessible mesh compression 

While progressive mesh algorithms primarily focus on coarse-to-fine refinements and random accessible 

schemes emphasize localized decoding, there are hybrid approaches designed to merge both capabilities. By doing so, 

they allow on-demand loading and viewing at multiple levels of detail while also supporting selective decompression 

of specific regions. This combination is especially beneficial for large-scale or distributed 3D pipelines where it is 

crucial to minimize memory usage, data transfer, and rendering latency. 
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A representative method, POMAR (Compression of Progressive Oriented Meshes Accessible Randomly) 

[27], enables stepwise refinements while preserving random access to any region at a chosen LOD. It tracks oriented 

patches and their subdivision history, encoding global connectivity updates alongside local geometry changes in a 

manner that supports immediate retrieval of coarse overviews or selective refinement of high-detail areas. This dual 

capability is vital for real-time visualization, where resources are limited or user-driven exploration requires rapid 

focus on different parts of the model. 

Multiresolution Random Accessible Mesh Compression [28] pursues similar goals by coupling progressive-

like encoding with random-access chunking. Each chunk encapsulates localized geometry and connectivity details, 

letting interactive systems load only the relevant segments at higher resolutions. Although this hierarchical 

organization imposes overhead, it can markedly improve real-time performance for large models. 

Additional research continues to refine these dual strategies. For example, Balsa Rodriguez, Gobbetti, and 

Pajarola [29] describe a compression-domain random-access framework integrating view-dependent rendering with 

partial loading of polygonal data. Collectively, these techniques strive to reduce data footprints and decoding costs 

without sacrificing either the flexibility of refined detail or the responsiveness of targeted decompression—key 

requirements in large-scale 3D visualization and interactive graphics. 

Comparative Analysis 

Below is a two-part examination of the methods presented in Sections 3.1 through 3.4, focusing on three key 

evaluation metrics - compression ratio, quality retention, and computational efficiency - followed by a comparison 

table summarizing their performance characteristics. We conclude with a discussion of the main trade-offs and 

considerations when choosing among these methods. 

1. Evaluation Metrics 

Assessing 3D mesh compression typically involves quantifiable metrics that capture compression ratio, 

quality retention, and computational efficiency. Below are representative formulas illustrating how these metrics are 

often expressed. 

Compression Ratio 

A fundamental measure is the compression ratio, which indicates the factor by which data is reduced. Let 

Soriginal be the size of the uncompressed data (in bits or bytes) and Scompressed be the size of the compressed data. 

Then the compression ratio R can be defined as: 

𝑅 =
 𝑆𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑆𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑
 , (1) 

Alternatively, in bits per vertex (bpv) notation, one may track: 

𝑏𝑝𝑣 =  
𝑆𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝑛
, (2) 

where n is the number of vertices. Traditional geometry compression can yield tens of bpv for the geometry 

component (after quantization and entropy coding), while connectivity can reach single-digit bpv. Predictive or 

transform-based methods often push these numbers lower, depending on mesh smoothness, connectivity complexity, 

and whether partial or full decompression is required. 

Quality Retention 

Quality or distortion measures how closely the reconstructed mesh approximates the original. One common 

metric is the root mean square (RMS) error between corresponding vertex positions: 

𝑅𝑀𝑆 =  √
1

𝑛
 ∑𝑛𝑖 = 1 ||𝑣𝑖  − 𝑣𝑖̃ ||

2
, (3) 

where 𝑣𝑖 is the original vertex position and 𝑣𝑖̃ is the decoded vertex.  

 

Computational Efficiency 

Practical usage often depends on measuring the time required to compress and decompress a 3D mesh, as 

well as the memory resources involved. Compression time reflects how long it takes to reduce a model to its 

compressed form, whereas decompression time indicates how quickly that model can be reconstructed for rendering 

or processing. Both metrics depend on factors such as algorithmic complexity, implementation details, and the degree 

of hardware parallelism or acceleration available. 

Memory usage also plays a significant role. Some methods, particularly those based on blocks or charts, can 

process only a portion of the mesh in memory at any one time, thereby reducing overall system demands. Approaches 

that enable on-demand loading, such as streaming or progressive schemes, can further lower peak memory 

requirements by unloading data that is no longer needed. In the end, an ideal compression algorithm balances a high 

reduction in data size with short encode and decode times and minimal memory consumption, especially for large-

scale or real-time 3D environments. 

2. Comparison Table 

Below is a concise, qualitative table comparing representative methods from single-rate, progressive, and 

random accessible categories. Each category’s entries capture the approach’s typical performance with respect to our 

three metrics. 
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Table 1 

Comparison table of various mesh compression techniques 

Approach Approx. Compression 

Rate (bpv or ratio) 

Quality Decompression Time 

Triangle Strips & Vertex 

Quantization 

(Clark; Foley et al.; 

Deering) 

~10–30 bpv total 

(geometry + connectivity) 

Near-lossless if 16–24 bits 

per coordinate. 

(some rounding) 

Low (simple indexing + 

coordinate scaling) 

Generalized Triangle Strips 

(Deering) 

Similar or slightly better 

than basic strips (~8–25 

bpv) 

Near-lossless with 

adequate quantization 

Low–Moderate 

(managing larger vertex 

buffer) 

Predictor-Based 

(Taubin, Rossignac; 

Touma & Gotsman) 

Can drop to ~5–20 bpv, 

depending on the mesh 

Lossless if no extra 

quantization 

(storing residuals exactly) 

Low–Moderate 

(predictor decoding + 

entropy) 

Edgebreaker 

(Rossignac) 

Connectivity ~2–4 

bits/triangle; geometry 

separate, total ~8–25 bpv 

Lossless topology 

(no distortion in 

connectivity) 

Low (straightforward 

symbol decoding) 

Valence-Driven 

Connectivity 

(Alliez & Desbrun) 

Connectivity ~1–3 

bits/triangle; geometry 

separate, total ~8–25 bpv 

Lossless connectivity Low–Moderate (valence-

based reconstruction) 

Spectral Mesh 

Compression 

(Karni & Gotsman) 

~10–40 bpv (varies 

with frequency truncation) 

Tunable from near-lossless 

to lossy  

(dropping high-frequency 

bands) 

Moderate–High 

(inverse spectral 

transform) 

Wavelet (Parametric 

Sequences) 

(Guskov & Khodakovsky) 

~15–50 bpv (coherent 

animations 

can see higher gains) 

Tunable; can discard higher 

wavelet coefficients 

Moderate–High (multi-

level wavelet decoding) 

3D Mesh Compression 

<br>Using Fixed Spectral 

Bases 

(Lengyel et al.) 

~10–30 bpv 

(similar to general spectral) 

Adjustable—can truncate 

high-frequency 

components 

Moderate–High (fixed 

basis reconstruction) 

CHuMI Viewer 

(Local kd-tree Partitioning) 

~10–40 bpv overall 

(massive models) 

Usually near-lossless 

(adaptive bit precision) 

Moderate (block-based 

decode + precision 

checks) 

Triangular Matrix-Based 

Lossless 

(He et al.) 

Connectivity <5–10 bpv, 

geometry separate, total 

~14–35 bpv 

Lossless connectivity Low–Moderate (matrix 

traversal and vertex 

binding) 

Hierarchical Arithmetic 

Coding 

(Song et al.) 

(Dynamic Displacements) 

~10–30 bpv per frame 

 

Near-lossless or lossy 

(depends on quantization) 

Moderate (arithmetic 

decoding of 

displacements) 

Hoppe’s Progressive 

Meshes 

~8–20 bpv once fully 

refined 

Near-lossless or visually 

lossless 

Low–Moderate (vertex-

split decoding) 

View-Dependent 

Refinement 

(Hoppe) 

~8–20 bpv, but 

partial refinement 

Region-specific fidelity Moderate (dynamic LOD 

logic) 

Progressive Forest Split 

(Taubin et al.) 

~10–25 bpv Lossless connectivity; 

geometry can be near-

lossless 

Low–Moderate 

(decoding forest updates) 

Compressed Progressive 

Meshes 

(Pajarola & Rossignac) 

~15–30 bpv Near-lossless if 

quantization is fine 

Moderate (batch 

processing + predictor 

decode) 

Wavelet-Based Progressive 

(Alliez & Desbrun) 

~15–40 bpv Tunable; can omit 

high-frequency detail 

Moderate–High 

(wavelet-based 

refinement) 

Progressive Parametric 

(Ibarria et al.) 

~8–20 bpv (fully lossless) Exactly lossless 

(no geometric errors) 

High (incremental 

parametric domain 

building) 

Streaming Meshes 

(Isenburg & Lindstrom) 

~10–25 bpv (with optional 

compression) 

Can be lossless if geometry 

is unquantized 

Low–Moderate (chunk-

based streaming decode) 

Streaming Compression 

of<br>Triangle Meshes 

~15–30 bpv Near-lossless if 

quantization is modest 

Moderate (chunk-level 

decoding overhead) 
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Table 1 continuation 

Approach Approx. Compression 

Rate (bpv or ratio) 

Quality Decompression Time 

Random-Accessible 

Compressed<br>Triangle 

Meshes 

~10–25 bpv Usually near-lossless 

(geometry can be 

quantized) 

Moderate (indexing 

overhead for random 

access) 

Mesh Chartification ~8–25 bpv Typically lossless 

within each chart 

Low–Moderate 

(boundary references) 

Meshlet Compression 

(“Towards Practical…”) 

~15–35 bpv Near-lossless with 

quantized coordinates 

Moderate (meshlet 

structure decoding) 

Neural Geometry Fields 

(Liu et al.) 

~20–100+ bpv 

(can be extremely compact 

if multi-shape) 

Lossy; depends on the 

network 

inference accuracy 

High (run-time neural 

inference) 

POMAR 

(Progressive + Random 

Access) 

~12–30 bpv Near-lossless if 

residuals stored exactly 

Moderate–High (oriented 

patch decode + partial 

refine) 

Multiresolution Random 

Accessible 

(Szymczak & Rossignac) 

~10–30 bpv Near-lossless 

(geometry can be 

quantized) 

Moderate (hierarchical 

chunk decode) 

Balsa Rodriguez et al. 

(Random-Access & 

Progressive) 

~8–25 bpv (varies 

by single-rate vs. 

progressive) 

Tunable fidelity, partial or 

full LOD 

Moderate (indexing + 

LOD decode) 

 

Discussion 

1. Trade-offs for Single-Rate vs. Progressive. 

Single-rate methods (e.g., triangle strips, generalized strips, predictor-based encoding, Edgebreaker) 

generally deliver a one-shot reconstruction at a specific resolution. They excel in scenarios where the model is fully 

downloaded or stored once and then rendered, offering straightforward implementations and high compression ratios. 

Progressive approaches, by contrast, introduce a hierarchy of mesh representations. Although they often incur a slight 

increase in storage overhead (due to metadata for splits or transformations), they enable level-of-detail (LOD) control 

and more efficient streaming in contexts where partial or incremental viewing is desired. 

2. Random Accessibility Benefits. 

Random-accessible schemes partition the mesh into small, independently decodable units, making them 

suitable for large models or applications where only parts of the mesh need to be viewed or edited at a time. This 

partitioning, however, necessitates additional data structures (e.g., chunk boundaries, indexing tables, or chart cross-

references) that may slightly reduce overall compression efficiency or increase encoding/decoding complexity. In 

return, they offer crucial benefits for out-of-core rendering pipelines, distributed computing environments, and any 

interactive application that requires on-demand retrieval of geometry. 

3. Combining Progressive and Random Accessibility. 

When both progressive refinement and local decoding are required, methods like POMAR balance the ability 

to selectively load details with the option to refine the entire mesh progressively. While these “hybrid” approaches 

can involve the most complex data management (keeping track of partial LOD states, oriented patches, boundary 

references, etc.), they allow flexible rendering in networked or resource-limited scenarios. The overhead from storing 

both progressive and random accessible metadata is outweighed by the advantage of being able to retrieve specific 

regions at different resolutions with minimal delay. 

4. Choosing the Right Technique. 

In practice, selecting a mesh compression algorithm depends on the target application, available bandwidth, 

and computational resources. High-end engineering or medical contexts might favor near-lossless or lossless 

approaches (predictor-based or specialized connectivity encoding) to preserve fidelity. Real-time rendering of large-

scale scenes may benefit more from random-accessible or progressive methods. Hybrid solutions should be considered 

if both partial decoding and multiple LODs are integral to the workflow. Ultimately, understanding the interplay of 

compression ratio, rendering performance, and implementation complexity is essential for choosing the best-suited 

solution. 

 

Applications and Future Trends 

Progressive and random accessible mesh compression techniques hold significant promise for modern 

rendering pipelines, where large datasets need to be visualized in real time across diverse platforms. By offering on-

demand access to specific regions of a model at varied levels of detail, these hybrid methods can efficiently 

accommodate both local culling (e.g., dynamic frustum or distance-based) and global streaming. The random 

accessibility component allows high parallelization on GPUs, as different segments of the mesh can be decoded 

independently; this also lends itself to more effective load balancing and better exploitation of hardware resources. 
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Meanwhile, the progressive aspect delivers real-time LOD adjustments that maintain performance even as scene 

complexity and camera movements evolve. 

Beyond real-time rendering, fields such as CAD, GIS, and medical imaging can benefit from partial-decoding 

strategies to interact with large-scale or detailed models on constrained devices or networks. However, further research 

is needed to optimize hybrid schemes that merge random-access chunking with multiresolution geometry encoding, 

aiming to reduce overheads while preserving high fidelity. Neural network–based compression also remains an 

exciting frontier: if the bottleneck of inference-heavy decompression can be mitigated or hybridized with more 

traditional decoding techniques, these methods could offer exceptional compression ratios without sacrificing 

interactive performance. By embedding neural fields or latent representations into a conventional mesh pipeline, 

developers might achieve the best of both worlds: high compression rates from learned encodings and swift 

decompression through GPU-friendly data structures or partial expansions. As hardware accelerators for AI continue 

to advance, such solutions may soon become practical for a wide range of 3D applications, enabling sophisticated 

geometry compression that is both scalable and fully responsive to real-time demands. 

 

Conclusion 
3D mesh compression has matured into a key enabler of interactive visualization, resource-efficient storage, 

and high-fidelity rendering. As models grow in polygon count to capture intricate details demanded by applications 

such as virtual reality, product design, and remote collaboration, the pressure on both data transmission and real-time 

rendering pipelines intensifies. In response, researchers have developed a spectrum of methods ranging from 

straightforward single-rate compression, where a fixed, highly optimized encoding is generated for a particular 

resolution, to elaborate, multi-stage processes that allow selective, progressive, or random-access decoding. Each 

technique trades off distinct factors: compression ratio, computational overhead, memory usage, and the final quality 

of reconstruction. 

Single-rate solutions often excel at providing strong baseline ratios while maintaining relatively simple 

decode paths, making them suitable for static environments or offline scenarios. Progressive approaches, by contrast, 

supply a smooth path from coarse mesh versions to full detail, supporting real-time level-of-detail (LOD) adjustments 

that help keep rendering workloads manageable. Random accessible schemes address the need to retrieve only subsets 

of a model, a boon for limited-memory or bandwidth-constrained scenarios and for large-scale virtual environments 

where only certain sections of geometry are relevant at any given moment. When combined, progressive and random 

accessible methods can unlock unprecedented flexibility, letting users not only refine in stages but also decode 

precisely the regions of interest in high detail, all without a full model load. 

Amid these established paradigms, the integration of neural network–based compression represents a 

burgeoning frontier. Such strategies can yield remarkable data reductions by leveraging learned feature 

representations, particularly when multiple meshes share structural similarities. However, practical deployment hinges 

on lowering the decoding latency inherent in neural inference. Future research may converge on hybrid methods that 

store latent codes in a neural format while capitalizing on proven, GPU-friendly partial decoding techniques. By 

optimizing this balance, developers may achieve the twin goals of deep compression and real-time responsiveness. 

Looking ahead, mesh compression is poised to remain a vital research area. Industrial and academic 

applications will demand ever more efficient encodings—both to fit the constraints of mobile devices, web platforms, 

or immersive headsets, and to streamline cross-platform content creation pipelines. Additionally, with the anticipated 

growth of metaverse-like experiences and volumetric capture, new compression challenges will emerge, pushing 

existing algorithms to adapt or inspiring wholly novel solutions. While no single scheme can claim universal 

dominance, the collective body of techniques discussed here—single-rate, progressive, random accessible, and 

hybrid—will serve as a robust toolkit, guiding users toward the approach best suited to their fidelity requirements, 

performance objectives, and evolving hardware capabilities. 
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