
 Technical sciences ISSN 2307-5732 
 

Herald of Khmelnytskyi national university, Issue 1, 2024 (331) 470 

DOI 10.31891/2307-5732-2024-331-71 

УДК 004.005:004.9 

DOBROVOLSKY YURIY 
Chernivtsi National University named after Yu. Fedkovicha  

https://orcid.org/0000-0002-1248-3615 
e-mail: y.dobrovolsky@chnu.edu.ua 

PROKHOROV PAVLO 

Chernivtsi National University named after Yu. Fedkovicha  

https://orcid.org/0009-0008-0965-5771 
e-mail: prokhorov.pavlo@chnu.edu.ua 

 

 

LIGHTWEIGHT ENVIRONMENTS FOR TESTING SPEED AND RELIABILITY OF 

SOFTWARE BASED ON OPERATING SYSTEM LEVEL VIRTUALIZATION  

 
An environment for software performance testing is described, which is based on the use of containerization technology 

using appropriate software (Docker or other) on the one hand, and a tool to investigate its reliability by measuring performance 

and carrying out load testing, such as ApacheBench or similar. The advantage of containerization technology for achieving the 

goal was evaluated. It is shown that in this case, the test environment can be deployed on different computers separately, rather 

than being deployed centrally. This provides following advantages: less cost in terms of computing resources compared to other 

ways of deploying environments on local computers. Certain types of environment configurations can be easily distributed and 

replicated between individual computers and workstations through the distribution and application of prepared configuration 

files. Compared to cloud environments, this approach does not require additional material costs for support. The scheme of 

operation of such an environment for non-functional testing has been analyzed.. The environment also allows you to simulate more 

complex configurations, for example, to study the operation of various load balancing algorithms/systems. The created testing 

environment was tested on the example of performance of testing web applications. It showed that the created environment allows 

you to calculate the approximate response time of the application and the presence of failures depending on the number of users 

who use the application at the same time. Also, load testing allows you to calculate the normal and critical number of application 

users and predict and prevent potential failures. The mechanism for creating test environments considered in this work can be used 

to build models that are necessary for studying and/or modeling certain types of software testing based on loads, load balancing 

algorithms between workstations, and others. Since such an approach can be used on almost any personal workstation with 

relatively small requirements for computing resources and the deployment and distribution of environments is quite simple, such 

an approach can be implemented not only in business, but also in universities for courses that involve the use similar environments. 
Keywords: software performance testing, software engineering, OS-level virtualization, software reliability,containers. 
. 

 
ДОБРОВОЛЬСЬКИЙ ЮРІЙ, ПРОХОРОВ  ПАВЛО 

Чернівецький національний університет ім. Ю. Федьковича 

 
ЛЕГКОВАГІ СЕРЕДОВИЩА ДЛЯ ТЕСТУВАННЯ ШВИДКОДІЇ ТА НАДІЙНОСТІ ПРОГРАМНОГО 

ЗАБЕЗПЕЧЕННЯ НА ОСНОВІ ВІРТУАЛІЗАЦІЇ РІВНЯ ОПЕРАЦІЙНОЇ СИСТЕМИ 

 
Створено середовище для нефункціонального тестування програмного забезпечення, засноване на використанні технології 

контейнеризації з одного боку, та інструменту для швидкодії та проведення тестування на надійність, а саме - на навантаження типу 

Apache Bench, або аналогічного. Створене середовище дозволяє розрахувати орієнтовний час відповіді додатку і наявність відмов в 
залежності від кількості користувачів, які одночасно користуються додатком, а також дозволяє розрахувати нормальну і критичну 

кількість користувачів додатку та спрогнозувати і запобігти потенційним відмовам. 

Ключові слова:функціональне тестування, програмна інженерія, контейнеризація, швидкодія ПЗ, надійність ПЗ, 
навантаження 

 

Introduction 

During the software development process, it is necessary to verify its reliability and quality. According to the 

ISTQB definition, the quality and stability of any software are defined by matching the requirements given in the 

specifications and other requirements definition documents. Such requirements are usually divided into functional and 

non-functional requirements. Functional requirements are usually related to functionality, which in many cases means 

matching business logic rules. Non-functional requirements encompass all other requirements, including performance 

parameters. Some software products are designed to handle large numbers of simultaneous connections and have short 

response times. Load and stress testing approaches should be used to test software under development or maintenance 

to meet these requirements. Most recent software is designed with a large number of users in mind, which is why 

testing its performance is an important task during software engineering and development. 

Related work 

General definitions and characteristics of performance testing types and their relationship are given in [1]. 

Conduction of different performance testing types requires special testing environments deploying, for which the 

balance between complexities and costs of environment deployment and deployment of developed software in this 

environment are very important. Another important question is how to make testing environments as much similar to 

real ones as possible, to make sure that results of testing using special testing environments could be useful in terms 

of real load predictions. These issues are described in detail in [2-4]. 

https://orcid.org/0000-0002-1248-3615
mailto:y.dobrovolsky@chnu.edu.ua
https://orcid.org/0009-0008-0965-5771
mailto:prokhorov.pavlo@chnu.edu.ua


 Технічні науки ISSN 2307-5732 
 

Вісник Хмельницького національного університету, №1, 2024 (331) 471 

Performance testing methodology requires using special performance testing software like Apache 

JMeter/Gatling/Locust and many others. Architecture, components and general principles of work for such tools are 

described in [5]. 

Commercial software development nowadays is being done using widely known agile software development 

methodologies, such as XP, Scrum or Agile. The Agile methodology is designed to make minimal viable products as 

quickly as possible through series of small working time periods which called sprints. Recent studies [6] reveal that 

performance testing integration into teams and projects that use Agile could be difficult, because the methodology 

itself doesn’t give direct approaches of how and when performance testing should be conducted and why it should be 

performed before the end of current sprint.  That’s why Implementation of efficient performance testing in such 

conditions require additional costs. 

Recent decades software development of web applications in most of cases follow microservice architectures 

[7], which assume splitting big software modules into small modules with single or small number of purposes. Instead 

of older monolith architectures approach, microservices allow to achieve better robustness, scalability, and 

transparency of software. But it also multiplies the amount of performance testing work, because in practice you need 

not only to test single modules, but some set of working simultaneously and the software as whole. 

It is worth to mention that during modern software development there are some not obvious practices that 

also could affect performance of final solution.  The first one is runtime performance, because modern compilers and 

virtual machines are also very complicated software, performance testing in practice should consider some specific 

runtime traits, as it shown in [8, 9] according to JVM special performance downscale examples. The second one is the 

process of software refactoring, that usually means syntax and structure code changes that should increase the 

performance, readability and transparency of software. However, there are numerous examples of cases when changes 

should not affect the performance of software product, but actually did it [10]. That is why for successful development 

performance tests, just as any other, should be conducted for any code changes being made, even in cases when it is 

not clearly obvious that they could affect in any way. 

Also, during the last decade web-applications in most cases are deployed using cloud-computing 

infrastructures (PaaS, IaaS approaches), and not using local or dedicated hosting resources. Cloud-specific best 

practices for performance testing are shown in [11]. 

Thus, we conclude that the practice of modern software development involves testing almost continuously 

[12], which means there is a need for tools and reproducible practices [13] that allow you to organize this with minimal 

costs. 

Aim of the study 

As we can see from the review of modern publications, there are many problems in the field of software 

testing. Test resources work on the basis of real or cloud computing servers. However, especially in the case of high 

workloads, the cost of deploying and maintaining such environments ciould be quite high. And this is one of the main 

problems of modern non-functional software performance testing. 

In this regard, the goal of the study is to create an environment for software performance testing, which 

consists in the simple deployment of test environments of sufficient complexity, with the help of which it is possible 

to simulate the load on the software and conduct performance testing checks. 

To achieve this goal, we’re going to investigate and complete following tasks: 

1. Evaluate container technologies in terms of lightweight testing environments creation. 

2. Study the convenience of using such environments 

3. Check that proposed approach is suitable for performance testing tasks. 

Methodology 

In this paper, an approach based on the use of containerization technology and the use of appropriate software 

is proposed for the task of deploying a test environment (Docker/LXC/Podman etc.)[14] and ApacheBench 

performance and load testing tool [15] or any similar to it.  

Let's consider the main properties of the proposed tools.  Docker is a tool for isolated Linux-like containers 

hosting and management. In the current work, containers are used to solve the problem of relatively simple and fast 

preparation of a reproducible environment that can be tested for performance and failures. Apache Bench is a load 

testing tool for WEB-applications performance/stress/load testing, that could measure performance of application 

through sending large number of HTTP requests using concurrent worker processes to it. This happens until the total 

number of requests for what to do is exhausted (the parameter is set arbitrarily in the command line). 

The main idea of the approach is to use containerization software to deploy test environments on different 

computers separately, instead of deploying it centrally. This provides the following benefits: 

1. Using containerization is less expensive in terms of computing resources than other ways of deploying 

environments on local computers, such as using virtual machines [16]. 

2. Certain types of environment configurations can be easily distributed and replicated between individual 

computers and workstations by distributing and deploying prepared configuration files. 

3. Compared to cloud environments, this approach does not require additional material costs for support. 

So, as part of the proposed approach to deploy a test environment and conduct performance or load testing, 

the user should perform the following steps: 

1. Install required software: 

• Container hosting software (Docker/LXC/Podman or any other that meets the requirements). 



 Technical sciences ISSN 2307-5732 
 

Herald of Khmelnytskyi national university, Issue 1, 2024 (331) 472 

• Load testing tool (ApacheBench/Apache JMeter/Gatling or any other that meets the requirements). 

2. In accordance with the tasks, the necessary containers with the appropriate software are launched with 

the help of prepared configuration files and/or command shell commands. 

It is worth to mention that the existing containerization systems allow performing such complex 

configurations as creating a network of containers, limiting the computing resources of an individual container, and 

accordingly the software running in it, connecting containers to file storage, and others. This allows us to create test 

environment models of almost any complexity. 

Next, use the load testing tool to apply the required load. The obtained results can be analyzed according to 

the set tasks. 

Fig. 1 illustrates the operation scheme of this environment (Control system means any Load testing tool as 

set of modules responsible for generation load and load results monitoring and evaluation). 

 

Fig. 1.  Scheme of the test environment for load testing 

 

Proposed approach can also be used to model more complex configurations, such as performance 

measurements of different load balancing algorithms and systems. [17].  Example of such environment is shown in 

Fig. 2. 

To demonstrate the proposed technology, it is proposed to simulate failures during load testing. Namely: we 

deploy a certain web application with parameters that limit the RAM of the container and load it. To reproduce the 

case of failure two methods are proposed: 

1. Limiting the computing resources of the container itself, which leads to the limitation of resources that 

server could utilize for processing requests. 

2. Using an HTTP application with a server that is not optimized for high levels of loads (a standard HTTP 

server built into the Python standard library will be used as an example). 

Next, we launch the Docker container with the image of the NGINX web server using the console 

command: 

$ sudo docker run -it --rm -d -p 8080:80  --name web nginx 

Start the load on the deployed application using the console command: 

$ ab -n 2000 -c 200 -k  http://127.0.0.1:8080/ 

As a result of the load, we will receive the report shown in Fig. 3. 

http://127.0.0.1:8080/


 Технічні науки ISSN 2307-5732 
 

Вісник Хмельницького національного університету, №1, 2024 (331) 473 

 

Fig. 2.  Scheme of the test environment for load testing with load balancer 

 

 

Fig. 3. Load testing report 



 Technical sciences ISSN 2307-5732 
 

Herald of Khmelnytskyi national university, Issue 1, 2024 (331) 474 

As we could see, in the line "Failed requests" we have the result "0", Which means that during our load all 

requests have been handled without errors. In order to simulate the case of failure we limited amount of computing 

resources that container could utilize for handling requests (8 MB RAM and 2 CPU cores) and launched it: 

$ sudo docker run -it --rm -d -p 8080:8000 -m 6m -c 2 --name web nginx 

We start the load on the deployed application using the console command 

$ ab -n 2000 -c 200 -k  http://127.0.0.1:8080/ 

As a result of the load, we will get the result shown in Fig. 4. where you can clearly see that there were 

failures (2787 requests returned with an error). Also, the waiting time for response has increased. These failures, which 

in this case took the form of the unavailability of the server's response at the specified time, were caused by the 

technical imperfection of the server and the load that was set. 

 

Fig. 4. Load testing report with failures 

 

Next, we could make tests with different numbers of workers and analyze it to test different hypotheses and 

metrics, set in the form of rules of the type "no more than n seconds for handle request and send response". The results 

of such tests are given in the tables 1 - 3. 

 

Table. 1 

Load test results with different number of concurrent workers (25, 50 and 100 respectively).  

The percentage of requests falling within the limit of not more than 2 second of response time  

System Under Test load 

parameters (ApacheBench 

CLI) 

NGINX (default 

settings) 

NGINX (mem  

8 MB, CPU 2) 

SimpleHTTP 

(default settings) 

SimpleHTTP 

(mem 8 MB, 

CPU 2) 

-n 100, -c 25, -s 180 99% 97% 96% 88% 

-n 100, -c 50, -s 180 99% 94% 90% 80% 

-n 100, -c 100, -s 180 99% 90% 87% 60% 

 

Table. 2 

Load test results with different number of concurrent workers (25, 50 and 100 respectively).  

The percentage of requests falling within the limit of not more than 2 second of response time  

System Under Test load 

parameters (ApacheBench 

CLI) 

NGINX (default 

settings) 

NGINX (mem 

8 MB, CPU 2) 

SimpleHTTP 

(default settings) 

SimpleHTTP 

(mem 8 MB,  

CPU 2) 

-n 100, -c 25, -s 180 99% 99% 99% 95% 

-n 100, -c 50, -s 180 99% 97% 95% 90% 

-n 100, -c 100, -s 180 99% 96% 94% 70% 

 

 

http://127.0.0.1:8080/


 Технічні науки ISSN 2307-5732 
 

Вісник Хмельницького національного університету, №1, 2024 (331) 475 

Table. 3 

Load test results with different number of concurrent workers (25, 50 and 100 respectively).  

The percentage of requests falling within the limit of not more than 2 second of response time  

System Under Test load 

parameters (ApacheBench 

CLI) 

NGINX (default 

settings) 

NGINX (mem 

8 MB, CPU 2) 

SimpleHTTP 

(default settings) 

SimpleHTTP 

(mem 8 MB,  

CPU 2) 

-n 100, -c 25, -s 180 99% 99% 99% 99% 

-n 100, -c 50, -s 180 99% 99% 99% 98% 

-n 100, -c 100, -s 180 99% 99% 99% 90% 

 

 As a result of testing, taking into account the data in the previous table, the following rules could be noted 

(for example, 2 rules are given): 

• For 100 simultaneous users (100 simultaneous connections), the response time of any operation in 99% of 

cases should not exceed 4 seconds when using NGINX with standard settings. The probability of an error 

(server response code other than 200) should not exceed 0.1% of all cases. 

• For 25 simultaneous users (25 simultaneous connections), the response time of any operation in 99% of cases 

should not exceed 4 seconds when using SimpleHTTP with standard settings. The probability of an error 

(server response code other than 200) should not exceed 0.1% of all cases. 

The mechanism for creating test environments considered in this work can be used to build models that are 

necessary for studying and/or modeling certain types of software testing based on loads, load balancing algorithms 

between workstations, and others. Since such an approach can be used on almost any personal workstation with 

relatively small requirements for computing resources and the deployment and distribution of environments is quite 

simple, such an approach can be implemented not only in business, but also in universities when studying disciplines 

that involve the use similar environments.  

The work was carried out as part of the scientific work of the department of software of computer systems of 

the Chernivtsi National University named after Yu. Fedkovich on the cathedral topic "Research, modeling and 

software development of complex dynamic systems". The results of the work are implemented in the educational 

process during the study of the course "Software Reliability Engineering". 

Conclusion 

1. An environment for performance software testing has been created, based on the use of containerization 

technology and the use of appropriate software (Docker or others) on the one hand, and a tool for measuring 

performance and carrying out load testing such as ApacheBench, or similar. 

2. The advantage of containerization technology for achieving the goal was evaluated. It is shown that in this 

case, the test environment can be deployed on different computers separately, rather than being deployed centrally. 

This does provide advantages: less cost in terms of computing resources compared to other ways of deploying 

environments on local computers. Certain types of environment configurations can be easily distributed and replicated 

between individual computers and workstations through the distribution and application of prepared configuration 

files. Compared to cloud environments, this approach does not require additional material costs for support. 

3. The scheme of operation of such an environment for performance testing has been analyzed. It is shown 

that the combination of load generation with the monitoring system and load testing tools are integrated into the control 

system as well. The environment also allows you to simulate more complex configurations, for example, to study the 

operation of various load balancing algorithms/systems. 

4. The created performance testing environment was verified using the example of testing web applications. 

It showed that the created environment allows you to calculate the approximate response time of the application and 

the presence of failures depending on the number of users who use the application at the same time. Also, load testing 

allows you to calculate the normal and critical number of application users and predict and prevent potential failures. 

 

References 

 

1. Keith Yorkston: “Performance Testing: An ISTQB Certified Tester Foundation Level Specialist 

Certification Review”. – Apress Berkeley, CA – 2021. DOI: https://doi.org/10.1007/978-1- 4842-7255-8 

2. Avramenko A.S., Avramenko V.S., Koseniuk H.V. Testuvannia prohramnoho zabezpechennia. 

Navchalnyi posibnyk. – Cherkasy: ChNU imeni Bohdana Khmelnytskoho, 2017. – 284 s. 

3.  Hrytsiuk Yu. I. Systema kompleksnoho otsiniuvannia yakosti prohramnoho zabezpechennia. Naukovyi 

visnyk NLTU Ukrainy. 2022. № 2(32). S. 81–95 s. 

4. Ushakova I. O. Pidkhody do zabezpechennia yakosti prohramnoho zabezpechennia. Suchasni informatsiini 

tekhnolohii i systemy : monohrafiia. Kharkiv : «Stylizdat», 2021. S. 125–140. 

5. Sarojadevi H. Performance Testing: Methodologies and Tools. Journal of Information Engineering and 

Applications Vol 1, No.5, 2011 

6. Traini L (2022) Exploring performance assurance practices and challenges in agile software development: 

an ethnographic study. Empir Softw Eng 27(3):74. https://doi.org/10.1007/s10664-021-10069-3 

7. V. Velepucha and P. Flores, "A Survey on Microservices Architecture: Principles, Patterns and Migration 

Challenges," in IEEE Access, vol. 11, pp. 88339-88358, 2023, doi: 10.1109/ACCESS.2023.3305687 

https://doi.org/10.1007/978-1-4842-7255-8
https://doi.org/10.1007/978-1-4842-7255-8
https://doi.org/10.1007/s10664-021-10069-3


 Technical sciences ISSN 2307-5732 
 

Herald of Khmelnytskyi national university, Issue 1, 2024 (331) 476 

8. Traini L, Di Pompeo D, Tucci M, Lin B, Scalabrino S, Bavota G, Lanza M, Oliveto R, Cortellessa V 

(2021) How software refactoring impacts execution time. ACM Trans Softw Eng Methodol 31(2). 

https://doi.org/10.1145/3485136 

9. Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, Michele Tucci. (2022). Towards effective 

assessment of steady state performance in Java software: are we there yet? Empirical Software Engineering, № 1. 

https://doi.org/10.1007/s10664-022-10247-x 

10. Martin Grambow, Christoph Laaber, Philipp Leitner, David Bermbach. (2021). Using application 

benchmark call graphs to quantify and improve the practical relevance of microbenchmark suites, PeerJ Computer 

Science, p. e548. https://doi.org/10.7717/peerj-cs.548 

11. D. Taibi, V. Lenarduzzi, Claus Pahl. Architectural Patterns for Microservices: A Systematic Mapping 

Study. CLOSER 2018: Proceedings of the 8th International Conference on Cloud Computing and Services Science; 

Funchal, Madeira, Portugal, 19-21 March 2018 

12. Ding Z, Chen J, Shang W (2020) Towards the use of the readily available tests from the release pipeline 

as performance tests: are we there yet? In: Rothermel G, Bae D (eds) ICSE ’20: 42nd international conference on 

software engineering, Seoul, South Korea, 27 June–19 July, 2020. https://doi.org/10.1145/3377811.3380351. ACM, 

pp 1435–1446  

13. Papadopoulos A V, Versluis L, Bauer A, Herbst N, von Kistowski J, Ali-Eldin A, Abad C L, Amaral J 

N, Tuma P, Iosup A (2021) Methodological principles for reproducible performance evaluation in cloud computing. 

IEEE Trans Softw Eng 47(8):1528–1543. https://doi.org/10.1109/TSE.2019.2927908 

14. Satya Bhushan Vermaa, Brijesh Pandeyb, and Bineet Kumar Gupta: “Containerization and its 

Architectures: A Study”. – ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal – Regular 

Issue, Vol. 11 N. 4 (2022), 395-409. DOI: https://doi.org/10.14201/adcaij.28351 

15. Measuring performance with Apache Benchmark Mar 15, 2022. URL: 

https://barryvanveen.nl/articles/78224837-measuring-performance-with-apache-benchmark 

16. Amit M. Potdar, Narayan D. G., Shivaraj Kengondc, Mohammed Moin Mullad: “Performance Evaluation 

of Docker Container and Virtual Machine”. – Procedia Computer Science – Volume 171, 2020, Pages 1419-1428. 

DOI: https://doi.org/10.1016/j.procs.2020.04.152 

17. Dalia Abdulkareem Shafiq, N.Z. Jhanjhi, Azween Abdullah: “Load balancing techniques in cloud 

computing environment: A review”. – Journal of King Saud University – Computer and Information Sciences 34 

(2022) 3910–3933. DOI:https://doi.org/10.1016/j.jksuci.2021.02.007 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1145/3485136
https://doi.org/10.1007/s10664-022-10247-x
https://doi.org/10.7717/peerj-cs.548
https://doi.org/10.1109/TSE.2019.2927908
https://doi.org/10.14201/adcaij.28351
https://barryvanveen.nl/articles/78224837-measuring-performance-with-apache-benchmark
https://doi.org/10.1016/j.procs.2020.04.152
https://doi.org/10.1016/j.jksuci.2021.02.007

