Technical sciences ISSN 2307-5732

https://doi.org/10.31891/2307-5732-2025-355-79
VJIK 637.5.02

SIKORA ROSTYSLAV

State University of Trade and Economics
https://orcid.org/0009-0002-7570-9826

e-mail: r.sikora@knute.edu.ua

POSTOLIUK ANDRII

Ternopil Ivan Puluj National Technical University
https://orcid.org/0009-0004-0169-3379

e-mail: mrapostoliuk@gmail.com

COMPARATIVE ANALYSIS OF THE EFFECTIVENESS OF ARCHITECTURAL
STYLES REST, GRAPHQL, AND GRPC FOR SCALABLE
MICROSERVICE SYSTEMS

The microservice architectural pattern has rapidly emerged as a dominant and highly effective approach for building
complex, distributed, and scalable applications in modern sofiware engineering. By judiciously decomposing monolithic
applications into a collection of small, independent, and loosely coupled services, organizations are increasingly able to achieve
significant gains in agility, resilience, and maintainability. This decomposition facilitates independent development, deployment,
and scaling of individual components, which is crucial for handling the dynamic demands of contemporary systems. As the adoption
of microservices continues to grow and mature across various industries, the selection of appropriate communication protocols
and architectural styles to govern interactions between these discrete services has become an increasingly critical and strategic
decision. The chosen architectural style profoundly impacts various non-functional requirements and overall system effectiveness,
including but not limited to scalability, performance, ease of development, integration complexity, and operational efficiency. This
paper undertakes a comprehensive comparative analysis of three prominent and widely adopted architectural styles frequently
employed in modern microservice architectures: Representational State Transfer (REST), GraphQL, and gRPC (Google Remote
Procedure Call). While each of these styles inherently offers distinct advantages and disadvantages, their ultimate suitability is
often highly contingent upon the specific requirements, constraints, and operational context of the target application. Our research
delves deeply into the core principles, underlying technologies, and defining characteristics of each of these architectural styles,
providing a robust theoretical understanding that underpins the subsequent comparative evaluation. The comparative evaluation
will assess the effectiveness of these styles based on a meticulously defined set of key criteria, encompassing critical aspects of
distributed system design: scalability, performance, development and integration simplicity, support for various interaction types
(e.g., streaming), observability, and security. For instance, we will analyze how REST's statelessness and caching capabilities
contribute to scalability, while also examining its potential for over-fetching and under-fetching, which can impact performance.
For GraphQL, we will highlight its client-driven data fetching capabilities, which precisely mitigate these issues, but also consider
the increased server-side complexity and challenges in caching. In the case of gRPC, the analysis will focus on its high performance
due to Protocol Buffers and HTTP/2, as well as its strengths in efficient streaming, while acknowledging potential complexities in
browser integration and debugging. Ultimately, this research aims to offer nuanced insights into when each architectural style
might represent the most appropriate and effective choice for building highly scalable and resilient microservice systems. By
examining the theoretical foundations and practical implications, alongside real-world case studies and industry experiences, this
paper seeks to provide a comprehensive and practical guide for architects and developers who are navigating the inherent
complexities of modern distributed system design and striving to make informed decisions regarding inter-service communication
paradigms. The structured approach of this article will first lay the theoretical groundwork for each architectural style, then
establish the criteria for a comparative analysis, followed by a detailed comparison, discussion of potential case studies and real-
world implementations, an exploration of existing challenges and promising future research directions, and finally, a concise
concluding summary of the findings. This structured analysis will empower practitioners to select the most suitable architectural
style, thereby contributing to the development of more efficient, robust, and maintainable distributed applications.

Keywords: microservices, architectural styles, REST, GraphQL, gRPC, scalability, performance, distributed systems, API
design.

CIKOPA POCTUCJIAB
Jlep>xaBHUI TOProBeNbHO-€KOHOMIYHUI yHiBepcme:‘T
HNOCTOJIIOK AHAPIN

TepHOMINBCHKUI HalliOHATIBHUN TEXHIYHUI yHiBepcHuTeT iMeHi IBana [Tymost

HOPIBHAJIbHUM AHAJI3 EOEKTUBHOCTI APXITEKTYPHUX CTUJIIB REST, GRAPHQL TA
GRPC JJII MACIITABOBAHUX MIKPOCEPBICHUX CUCTEM

Mixpocepsichuii apximekmyphuii wiabion weUoKo cmag OOMIHYIOUUM MA GUCOKOeDEKMUSHUM NIOX000M O NoOy008uU CKIAOHUX,
PO3N0OINeHUX Ma MACWmado8anux 000amKia y CyuacHii po3podyi npoepamnozo sabesnevenns. LLlnaxom po3ymnoi 0exomnosuyii MOHOTIMHUX
000amKi8 HA CYKYNHICMb MAIUX, He3ANeHCHUX ma ciabo 36'a3aHux cepeicie, opeaHizayii éce wacmiuie MOXCYMb O0CASMU 3HAYHUX YCNIXIE
eHyuKocmi, giomogocmiukocmi ma 3pyunocmi o6cayeosysanms. Ll dexomnozuyis cnpusic He3anedcHiti po3pobyi, po3eopmannio ma
MacumabysanHio OKpeMux KOMNOHEHMIS, WO € KpUMmuuHO GaXdCIuum Oas 0OpobKku Ounamiunux eumoz cyuacuux cucmem. OcKinoku
BIPOBAONCEHHS MIKPOCEPBICIB NPOO0BIHCYE 3pocmamiu. ma 003pieamu 8 Pi3HUX 2aJ1y35X, 8UOIP 8I0N0GIOHUX NPOMOKOIIE 368 3KV Ma apXimeKmypHux
cmuni 05l ynpaguints 83a€MOOIMU MIJIC YUMU OUCKPEIMHUMU cepgicamu cmag 6ce Olibui KpumuuHum ma cmpameziynum piwtennsam. Obpanuil
apximekmypHuti Cmuib Cymmeso GNAU6Ac HA Pi3Hi HeQYHKYIOHANbHI 6UMOU A 3A2aNbHY eQeKmUusHICIb CUCmeMl, SKIIOYaloul, are He
00MENCYIOUUCH MACWMAOOBAHICIIO, NPOOYKMUBHICIIO, 1e2KICmio po3poOKuU, CKIAOHIicmIo iHmezpayii ma onepayitinoo egexmuseHicmio. Ll
cmamms npoeooOUMb KOMNIEKCHUU NOPISHANbHUL AHANI3 MPLOX BUOAMHUX MA WUPOKO NPUUHAMUX APXIMEKMYpHUX CMumie, AKi 4acmo
BUKOPUCIOBYIOMbCS 8 CYUACHUX MIKpocepsichux apximexmypax: Representational State Transfer (REST), GraphQL ma gRPC (Google Remote

560 Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

https://orcid.org/0009-0002-7570-9826
mailto:r.sikora@knute.edu.ua
https://orcid.org/0009-0004-0169-3379
mailto:mrapostoliuk@gmail.com

TexHiuHi HayKu ISSN 2307-5732

Procedure Call). Xoua koowcen 3 yux cmuuie 3a c60€10 cymniio nponoHye okpemi nepesazu ma HeooiKuy, ixHs KiHyeea npuoamnicms 4acmo 3HauHoI
MIpoI0 3anedxcumy 6i0 KOHKPEmHUX 6uMoz, 00MediceHb ma Onepayiiino2o KOHMeKCny yinbogo2o s3acmocysanns. Hawe Ooocniodcenns 2nuboxo
3AHYPIOEMbCSL 6 OCHOGHI NPUHYUNU, 6A306i MeXHONOI Ma GUIHAYATLHI XAPAKMEPUCTIUKU KOJICHO20 3 YUX APXIMEKMYPHUX CMULE, HAOauu
Haolline meopemuyne PO3YMIHHS, SIKe JeNCUMb 8 OCHOBL No0anbutoi nopieHAnbHoI oyinku. Tlopiensanena oyinka 6yoe oyinosamu egexmusnicmo
Yux Cmunié Ha OCHOBI PemenbHO GU3HAYEHO20 HADOPY KIIOUOBUX KPUMEPIi8, W0 OXONI0IONb KPUMUYHI ACNeKMU NPOeKmy6aHHs po3nooileHux
cucmem: Macuimabo8anicmy, NPOOYKMUGHICHb, RPOCMOMA PO3poOKU ma inmezpayii, niOMpUMKa Pi3HUX Munie 63aemMooii (HanpuKiao, NOMoKo8a
nepeoaua), cnocmepedicyséanicmos ma 6e3nexa. Hanpuxnao, mu npoananizyemo, sax oescmamesgicmo REST ma moscausocmi Keuwty8aHHs Cnpusioms
Macuimabosanocmi, 00HOYACHO OOCTIOACYIOUU 11020 NOMEHYIAN 0I5l HAOMIPHO20 A60 HEOOCMAMHBLO20 OMPUMAHHIA OAHUX, UJO MOICE GNIUHYMU HA
npooykmusnicmy. /s GraphQL mu niokpeciumo 11020 MOANCIUBOCE OMPUMAHHS OAHUX, OPIEHMOBAHI HA KIIEHMA, SIKI MOYHO NOMSIKULYIOMb Yi
npobremu, ane Makoxic poscNAHeMO RIOBUWEHY CKIAOHICMb HA CMOPOHI cepsepa ma npobremu 3 kewysanHam. Y eunaoky gRPC, awnanis
30cepeoumvcsi Ha 1020 UCOKill npodykmueHocmi 3aeosiku Protocol Buffers ma HTTP/2, a makooic 11020 CUTbHUX CIOPOHAX 6 epeKmusHil
NOMOKOSGIl nepedaui, 0OHOYACHO BU3HAIOYU NOMEHYIIHI CKIAOHOWI 8 inmezpayii 3 6pay3epom ma Hana2oddceHHi. 3peutmoio, ye 00CiodCeHHs Mac
Ha Memi 3anpononyeamu MoHKi 6i00MOCHI nPo me, KOJU KOJICEH apXimeKmypHuil Cmulb Modice Oymu HatObw 6i0n0GiOHUM Ma eqheKmueHUM
8UOOPOM 0151 ROOYIOBU BUCOKOMACUMADOBAHUX MA BIOMOBOCMITIKUX MIKpOCcepsicHuX cucmem. Posensdarouu meopemuyHi 0CHO8U Ma NPAKMUYHI
HACTIOKU, NOPAO 3 PeabHUMU MEMAMUHHUMU OOCTIOHCEHHAMU MA OOCEI00M 2ay3i, Ysi CMAMMms NPpazHe Ha0amu KOMNIAEKCHULL Ma Npakmu4Huil
NOCIOHUK O3 apXimeKmopie ma po3poOHUKI8, AKI OPIEHMYIOMbCA Y NPUMAMAHHUX CKIAOHOWAX CYHACHO20 OU3AUHY PO3NOOIIEHUX Cucmem ma
NPaAzHymeb npuimamu 0OTPYHMOBAHI pilleHHs w000 NapaoucM MidccepgicHoi komyHikayii. Cmpykmyposanutli nioxio yiei cmammi cnovamky
3aK1a0e MmeopemuiHy 0CHOBY OISl KOJICHO20 apXimeKmypHO20 CIUIOo, NOMIM 6CIAHOGUMb Kpumepii 0Jisi NOPIGHSIbHO20 AHANI3Y, NICIS 4020 Oyde
npoeedeHo oemanbHull NOPIeHAHHA, 002060PeHHA NOMEHYIUHUX MEMAMUYHUX OOCTIONHCEHb MA PeanbHUX 6NPOBAOHCEHb, OOCTIONCEHHS ICHYIOUUX
npoodiem ma nepcneKmueHUX HAnpAMKI6 MauOymHix 00Caiodicetdb, i, Hapewmi, Kopomxe niocymroge pesiome UCHOBKIG. Lletl cmpyxkmyposanuil
ananiz 003601UNb NPAKMUKAM 8UOpamu Hatbinbw niOX0O0AWUI apXIMeKmypHutl CIub, MUM CamMuM CRPUAIYYU pO3poOYi 6ilb eheKmusHUX,
HAOIIHUX Ma IecKuX y RiOMpumyi po3nooLieHux 000amKig.

Knrouosi cnosa: mikpocepsicu, apximexmypui cmuni, REST, GraphQL, gRPC, macwumabosanicmv, npoOyKMUSHICHb, PO3NOOLIEHI
cucmemu, ouzatin API.

Crarts Hanifiuuia qo penakiii / Received 28.05.2025
IpuiinsaTa no apyky / Accepted 26.06.2025

Theoretical Foundations of Architectural Styles

In the realm of microservices, the way services communicate with each other is paramount to the overall
system's behavior and characteristics. Different architectural styles dictate the rules and conventions for this inter-
service communication. This section will delve into the fundamental principles and characteristics of REST, GraphQL,
and gRPC, providing a solid theoretical understanding for the subsequent comparative analysis.

REST (Representational State Transfer)

Representational State Transfer (REST) is an architectural style that has gained widespread adoption for
building web services and, subsequently, microservices. At its core, REST leverages the well-established HTTP
protocol as its communication backbone. A fundamental principle of REST is the stateless nature of client-server
interactions (see Figure 1). This means that each request transmitted from a client to a server must encapsulate all the
necessary information for the server to understand and process it, without the server relying on any previously stored
client context or session state. This statelessness simplifies server-side design, enhances the scalability of the system
by allowing requests to be handled by any available server instance, and contributes to the overall robustness of the
architecture.

Another defining characteristic of REST is its emphasis on a uniform interface. This interface is built upon a
consistent and predefined set of methods provided by the HTTP protocol, such as GET for retrieving resources, POST
for creating new resources, PUT for updating existing ones, and DELETE for removing resources. Resources
themselves are uniquely identified through Uniform Resource Locators (URLs), providing a standardized way to
address and interact with the different entities within the system. The transfer of state between the client and the server
occurs through representations of these resources, commonly using formats like JSON. Furthermore, REST
architectures can benefit from explicit caching directives embedded in the responses, allowing intermediary
components or clients to store and reuse responses, thereby improving efficiency and reducing the load on the server
infrastructure. The layered system aspect of REST allows for the introduction of intermediary components like proxies
and gateways, which can enhance scalability, security, and other qualities without requiring the client or server to
possess explicit knowledge of these layers. While less frequently utilized in typical microservice scenarios, the
optional "code on demand" principle allows servers to extend client functionality by providing executable code.

The widespread adoption of REST has led to a vast ecosystem of tools, libraries, and frameworks, simplifying
the development and integration of services. This broad familiarity and extensive tooling offer a relatively low barrier
to entry for developers. For basic Create, Read, Update, and Delete (CRUD) operations, REST provides a
straightforward and intuitive approach to service design. Its reliance on standard HTTP and well-established
conventions makes it advantageous for public-facing APIs where broad client support and discoverability are
paramount. Systems where data requirements are relatively predictable and the overhead of potential over-fetching is
acceptable can also find REST to be an effective solution. The maturity of HTTP caching mechanisms is a significant
benefit for public APIs that serve frequently accessed, relatively static data.

In contrast to REST's resource-centric approach, GraphQL presents itself as a query language specifically
designed for APIs, accompanied by a server-side runtime to execute these queries (see Figure 2). Developed internally
at Facebook to address the inefficiencies often encountered with traditional REST APIs, GraphQL empowers clients
to precisely specify their data requirements. Instead of receiving fixed data structures defined by the server, clients
can construct queries that request only the specific fields they need, thus mitigating the problems of over-fetching

BicHuk XmesnbHUybko20 HayioHabHo20 yHigepcumemy, N4 2025 (355) 561

Technical sciences ISSN 2307-5732

(receiving unnecessary data) and under-fetching (needing to make multiple requests to gather all required
information). This client-driven approach to data fetching fundamentally alters how clients interact with APIs, leading
to significant reductions in bandwidth consumption and improved performance on the client side. For data-hungry
applications, GraphQL can drastically reduce network calls.

i REST API Design —

1 Self-descriptive

/ | Messages I"‘__,\
—_— Sy
— ‘.I
//' Cacheable 0—1 Layered System R "‘-\
Code On-Demand

esource-Based

\
| 3

-~ —| | SR \
,/ Principles Uniform Interface "\
f Manipulation of N
"‘ | Resources ‘\
S Stateless Client-Server Through |
./ Representations 'S
\ N
" - '-
/ _[—> Simple & Fine-grained ‘ Hypermadia as /
:\ REST : | theEngine of \
.\\ PUT PUT Paginaticn) Application State
7 http://eg.com/customers/ 33245 first, last, next, prev \ (HATEDAS)
(GET !
\ http://eg.com/customers/ 33245 GET

\; http:/feg.com/customers/33245/orders F—b Filtering / Ordering = — Connectedness— -
:‘ oSt Methods “links"[/
\ POST

N\ http:/feg.com/customers) { \
/ . = | Resource Naming rrel": "next’, |

" . “href': "hitp://api.eg.com/users/427offset=208limit=3" /
®
1 }

\\ DELETE DELETE Monitering —— Versioning | 1 |
e http://eg.com/customers/ 33245 /
'-\ Caching |+—"—| Security CORS r
S
—I‘._ Input Validations Idempotence __7_,/
'\\ LS Auth e
'\ Rate Limtiting Logging /r'- —=5

L S
A~

~ e N ~

Fig.1. REST API Design (Source: blog.bytebytego.com)

GraphQL

The foundation of a GraphQL API lies in its strongly-typed schema. This schema meticulously defines all
the data accessible through the API, outlining the various types of objects, their fields, and the relationships between
them. This schema serves as a formal contract between the client and the server, ensuring a shared understanding of
the available data landscape. The presence of a robust type system within GraphQL facilitates better communication
between client and server development teams, enables earlier detection of errors during development, and supports
the use of powerful tooling such as automatic code generation for client libraries and server-side resolvers. This also
enhances the developer experience, as clients can tailor queries, simplifying front-end development by reducing data
processing and transformation needs.

The foundation of a GraphQL API lies in its strongly-typed schema. This schema meticulously defines all
the data accessible through the API, outlining the various types of objects, their fields, and the relationships between
them. This schema serves as a formal contract between the client and the server, ensuring a shared understanding of
the available data landscape. The presence of a robust type system within GraphQL facilitates better communication
between client and server development teams, enables earlier detection of errors during development, and supports
the use of powerful tooling such as automatic code generation for client libraries and server-side resolvers. Unlike the
multiple endpoints often found in REST APIs, a typical GraphQL API exposes a single endpoint that acts as the entry
point for all types of queries, regardless of the specific data being requested. Moreover, GraphQL extends beyond
simple request-response interactions by natively supporting subscriptions, allowing clients to receive real-time updates
when specific data on the server changes.

562 Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

TexHiuHi HayKu ISSN 2307-5732

RESTENGraphQLY
) ByteByteGo
=9

Client Request: GET /users/123 Microservices
o Response SEEm—
{
L name:“Bob",
gender:“male”,
Wreb GET forders/456 ‘¢ =‘5.
N 4
User Service
) Request: GET /orders/456
Mobile
. Response —
{ =}
product:“abc”, = R
quantity:“2", 5
price:*100.00"
PC } Order Service

Request: POST /graphql
GraphQL B
user(id: 123): {
name
gender

Cliant @ @ GraphQl Microservices

} - User
i'p } id o
L% } name

nde
Web) ig.P.

/ \ E—
/ = User Service
Response | \ —_— e
{ | | —
5 user{ !
Mobiie id:123" Order Order e
b B‘Oh g product product s — q‘
gender:‘male quantity quantity [
L order{ price price O
; product:“abc”)
quantity:"2" Order Service
PC price:*100.00" —_—
— } — ——————————
i
}
~ D

Fig.2. REST API Design (Source: blog.bytebytego.com)

gRPC (Google Remote Procedure Call)

gRPC, developed by Google, offers a high-performance, language-agnostic framework for remote procedure
calls. It is built upon modern technologies such as Protocol Buffers as its Interface Definition Language (IDL) and
HTTP/2 as its transport protocol. Protocol Buffers provide an efficient and structured way to serialize and deserialize
data, leading to smaller message sizes and faster transmission compared to text-based formats like JSON. HTTP/2,
the next evolution of the HTTP protocol, offers significant performance improvements over HTTP/1.1, including
multiplexing (allowing multiple requests and responses to be sent over a single connection), header compression, and
server push capabilities.

A key characteristic of gRPC is its reliance on a contract-first approach. Developers define the service
interface using Protocol Buffers, specifying the data structures and the methods (procedures) that can be called
remotely. From this definition, client and server stubs (code that facilitates communication) can be automatically
generated in various programming languages, streamlining the development process and ensuring strong type safety
across service boundaries. The use of HTTP/2 as the underlying transport enables advanced communication patterns,
including efficient streaming of data in both directions (client-to-server, server-to-client, and bidirectional). While
gRPC excels in performance and supports a wide range of languages, its integration with traditional browser-based
clients can be more complex compared to REST or GraphQL [1], often requiring the use of intermediary proxies or
other solutions.

Criteria for Comparative Effectiveness Analysis

To effectively compare the suitability of REST, GraphQL, and gRPC for building scalable microservice
systems, it is essential to establish a set of relevant criteria (see Figure 2). These criteria will serve as the yardsticks
against which each architectural style will be evaluated, allowing for a structured and comprehensive analysis of their
strengths and weaknesses in the context of modern distributed applications [3][6]. The following subsections outline
the key aspects that will be considered in this comparative assessment.

BicHuk XmesnbHUybko20 HayioHabHo20 yHigepcumemy, N4 2025 (355) 563

Technical sciences ISSN 2307-5732
1993 1999 2005 2015
RDA SOAP JSON-RPC GRAPHQL
1991 1998 | 2000 2007 2016
CORBA XML-RPC : REST ODATA gRPC
SOAP REST GraphQL RPC
(Simple Object Access Protocol) |(REpresentational State Transfer) : (Remote Procedure Call)
_\L v, Va "
Organized in terms enveloped message compliance with six
? of sTF:"ucTure . nr'chifet::fuml constraints senematypeisystehy | Jatnljmocecive cal
A
: JSON, XML,
Format XML only XN, JSO:::TML' plain JSON Protobuf, Thrift,
FlatBuffers
<
Learning curve Difficult Easy Medium Easy
4
Community Small Large Growing Large
i R payment gateways - command and action-
- identity management - mobile APT oriented APIs
Vo2 toace - ?RM spluffons - p!.lb“t APIs) R rcnoom;ﬁzx sy:'rems - high pg.rfqrmqnce.
- financial and - simple resource-driven apps| _ el communication in
telecommunication services e massive micro-services
% A legacy system support systems

Fig.3. Comparison of API architectural styles (Source: altexsoft.com)

Scalability

Scalability refers to the ability of a system to handle an increasing amount of work by adding resources. In
the context of microservices, this often involves horizontal scaling, where more instances of services are deployed to
distribute the load. The architectural style adopted can significantly influence how easily a system can be scaled.
Factors such as statelessness, connection management, and the overhead of communication protocols play a crucial
role. We will analyze how REST, GraphQL, and gRPC facilitate or hinder the horizontal and vertical scaling of
microservices and examine the common load balancing strategies employed with each style.

Performance

Performance is a critical aspect of any distributed system, encompassing factors such as latency (the time
taken for a request to be completed), throughput (the amount of work a system can handle in a given time), and
resource utilization (the consumption of CPU, memory, and network bandwidth). The choice of architectural style
and its underlying communication protocols can have a profound impact on these metrics. We will compare the
performance characteristics of REST (typically using JSON over HTTP/1.1 or HTTP/2), GraphQL (often using JSON
over HTTP/1.1 or HTTP/2), and gRPC (using Protocol Buffers over HTTP/2), paying attention to data
serialization/deserialization overhead and network efficiency [2][7].

Development and Integration Simplicity

The ease with which developers can build, understand, and maintain microservices, as well as the simplicity
of integrating services built with different technologies, is an important consideration. This includes the availability
of mature tools and libraries, the learning curve associated with each style, and the conventions and best practices that
developers need to adhere to. We will assess the developer-friendliness of REST, GraphQL, and gRPC ecosystems
and the challenges involved in integrating them with existing systems or third-party services.

Support for Different Interaction Types

Microservices often need to support various communication patterns beyond the simple request-response
paradigm. These can include streaming of data (e.g., for real-time updates or large datasets) and bidirectional
communication (where both the client and server can send and receive data streams concurrently). We will examine
the native support for different interaction types offered by REST, GraphQL, and gRPC and their implications for
building diverse functionalities within a microservice architecture.

Observability

In a distributed system composed of numerous independent services, the ability to monitor the health,
performance, and behavior of the system is crucial. Observability encompasses logging, metrics, and tracing, allowing
developers and operators to understand what is happening inside the system and diagnose issues effectively. We will

564 Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

TexHiuHi HayKu ISSN 2307-5732

evaluate how well REST, GraphQL, and gRPC lend themselves to observability practices and the availability of tools
for monitoring and tracing systems built with each style.
Security

Security is a paramount concern for any application, especially those handling sensitive data or financial
transactions, as is common in e-commerce systems (as per your initial context). The architectural style can influence
the security mechanisms that can be employed and the inherent security characteristics of the communication. We will
discuss the built-in security features and common security considerations for REST, GraphQL, and gRPC, including
aspects like authentication, authorization, and protection against common web vulnerabilities.

By analyzing REST, GraphQL, and gRPC against these six key criteria, we aim to provide a comprehensive
understanding of their relative strengths and weaknesses in the context of building scalable and effective microservice
systems.

Comparative Analysis of the Effectiveness of REST, GraphQL, and gRPC for Microservices
Having established the theoretical foundations and the criteria for comparison, this section will delve into a
direct analysis of REST, GraphQL, and gRPC, evaluating their effectiveness across the defined metrics in the context
of building scalable microservice systems [4].
Comparative Table Based on Defined Criteria
To provide a concise overview, table 1 summarizes the comparative analysis across the key criteria.

Table 1
Criterion REST GraphQL gRPC
Scalability Good (stateless, cacheable) | Good (efficient data fetching | Excellent (HTTP/2,
reduces load) connection reuse)
Performance Moderate (JSON overhead, | Generally good (avoids | Excellent (Protocol
potential over/under- | over/under-fetching), potential | Buffers, HTTP/2)
fetching) for complex queries
Dev High (familiar, broad | Moderate (learning curve, server | Moderate (contract-first,
Integration tooling) complexity) code generation)
Simplicity
Interaction Primarily Request/Response | Request/Response, Subscriptions | Request/Response,
Types Streaming (uni/bi)
Observability Good (standard HTTP | Good (specific GraphQL tools | Good (standard HTTP/2
tooling) emerging) tooling, interceptors)
Security Relies on HTTP security | Relies on HTTP security, field- | Relies on HTTP/2 &
mechanisms level auth transport security

Detailed Analysis of Strengths and Weaknesses

Representational State Transfer (REST) has become a cornerstone of web service development, and its
application in microservice architectures benefits significantly from its widespread familiarity among developers. The
principles of REST, built upon the well-established HTTP protocol, offer a relatively low barrier to entry and are
supported by an extensive ecosystem of tools, libraries, and frameworks, simplifying the development and integration
of services. Particularly for basic Create, Read, Update, and Delete (CRUD) operations, REST provides a
straightforward and intuitive approach to service design. However, a notable drawback of REST lies in its potential
for inefficient data retrieval. Clients often face the dilemma of either receiving more data than their application requires
(over-fetching) or needing to make multiple requests to different endpoints to gather all the necessary information
(under-fetching). These inefficiencies can lead to increased network traffic and higher processing overhead.
Furthermore, managing the evolution of RESTful APIs without disrupting existing clients can present considerable
challenges, often requiring complex versioning strategies.

In contrast, GraphQL offers a client-centric approach to data fetching, fundamentally altering how clients
interact with APIs. One of its key advantages is the ability for clients to precisely specify their data requirements in a
query, thus eliminating the inefficiencies associated with over-fetching and under-fetching common in REST. This
precise retrieval can lead to significant reductions in bandwidth consumption and improved performance on the client
side. The presence of a strongly-typed schema in GraphQL APIs provides a clear and well-defined contract between
the client and the server, fostering better communication between development teams and enabling the use of powerful
tooling for code generation and validation. Moreover, GraphQL's inherent support for subscriptions makes it a
compelling choice for building applications that require real-time data updates. However, the implementation of a
GraphQL server typically involves greater complexity compared to setting up a basic REST API. Additionally, the
flexibility afforded to clients in constructing queries introduces the potential for poorly optimized or deeply nested
requests that can place a significant strain on server resources. Finally, leveraging the built-in caching mechanisms of
HTTP is not as straightforward with GraphQL's single endpoint architecture, often necessitating the adoption of
alternative caching strategies.

gRPC distinguishes itself in the realm of microservices through its emphasis on high performance and
efficient communication. This efficiency is largely achieved through the use of Protocol Buffers as the data

BicHuk XmesnbHUybko20 HayioHabHo20 yHigepcumemy, N4 2025 (355) 565

Technical sciences ISSN 2307-5732

serialization format, which offers significant advantages in terms of message size and processing speed compared to
text-based formats like JSON. The underlying transport protocol, HTTP/2, further enhances performance with features
such as multiplexing and header compression. A significant strength of gRPC is its contract-first development
approach, facilitated by the use of Protocol Buffers as the Interface Definition Language (IDL). This allows for the
automatic generation of strongly-typed client and server stubs in a wide range of programming languages, streamlining
the development process and ensuring type safety across service boundaries. Furthermore, gRPC provides excellent
built-in support for various streaming communication patterns, including unary, server-side, client-side, and
bidirectional streaming. Nevertheless, gRPC also presents certain limitations. Direct integration with traditional
browser-based clients is not as seamless as with REST or GraphQL, often requiring the implementation of
intermediary proxy layers. Additionally, the reliance on Protocol Buffers, a binary format, can make debugging more
challenging without specialized tooling, and the concepts and associated tooling of gRPC may present a steeper
learning curve for developers primarily familiar with other architectural styles [5].
Discussion of Use Cases

The selection of an architectural style for a microservice system should not be a one-size-fits-all decision.
The optimal choice is heavily influenced by the specific requirements, constraints, and context of the application being
built. This subsection will explore typical use cases where REST, GraphQL, and gRPC might be the most appropriate
architectural styles.

REST often emerges as a suitable choice for microservice systems that primarily involve simple Create,
Read, Update, and Delete (CRUD) operations on resources. Its simplicity and the vast ecosystem of tools make it a
pragmatic option for services that need to expose basic functionalities. Furthermore, for public-facing APIs where
broad client support and discoverability are paramount, REST's reliance on standard HTTP and its well-established
conventions are advantageous. Systems where the data requirements of clients are relatively predictable and where
the overhead of potential over-fetching is acceptable might also find REST to be a straightforward and effective
solution. The maturity of HTTP caching mechanisms can also be a significant benefit for public APIs that serve
frequently accessed, relatively static data.

GraphQL, on the other hand, shines in scenarios characterized by complex and evolving data requirements
on the client side. Applications such as mobile apps and single-page applications, which often need to fetch specific
sets of data tailored to different views or user interactions, can greatly benefit from GraphQL's ability to eliminate
over-fetching and under-fetching. In federated data scenarios, where data is aggregated from multiple underlying
services, GraphQL's schema stitching capabilities provide a unified and efficient way for clients to query across these
diverse sources. Moreover, for public APIs where providing clients with fine-grained control over the data they receive
is a key consideration, GraphQL offers a powerful and flexible solution. The real-time capabilities offered by
GraphQL subscriptions also make it a strong contender for applications that require live data updates, such as
collaborative tools or notification systems.

gRPC typically proves to be most beneficial for high-performance internal communication between
microservices where low latency and high throughput are critical. Its use of Protocol Buffers for efficient serialization
and HTTP/2 as a high-performance transport protocol makes it well-suited for building backend systems that require
rapid and efficient data exchange. In polyglot environments, where microservices are developed using a variety of
programming languages, gRPC's support for code generation in numerous languages ensures seamless and strongly-
typed communication across service boundaries. Furthermore, applications that require efficient streaming of data,
such as media processing pipelines or real-time analytics platforms, can leverage gRPC's robust support for various
streaming patterns. While browser integration might require additional effort, for backend-to-backend communication
within a microservice architecture, gRPC often provides significant performance advantages.

The choice ultimately depends on a careful evaluation of the specific needs of the system, considering factors
such as the complexity of data requirements, performance sensitivity, development team expertise, and the need for
real-time communication or broad client compatibility.

Analysis of Real-World Examples of Using REST, GraphQL, and gRPC in Large Microservice Systems

A notable example of modern microservice architecture in e-commerce is an open-source modular backend
that integrates REST, GraphQL, and gRPC for different communication needs. In this system, core services such as
account management, product catalog, and order processing are implemented as independent Go microservices, while
a Python-based recommender service leverages gRPC for efficient, high-performance communication. The platform
employs a unified GraphQL API gateway, providing clients with a flexible and efficient interface to query and mutate
data across all backend services. Event streaming is handled through Kafka, enabling asynchronous updates and
decoupled service interactions. This hybrid approach demonstrates how REST, GraphQL, and gRPC can be combined
to optimize for developer experience, performance, and scalability in a real-world e-commerce platform.

Examination of Companies' Experiences Regarding the Selection and Implementation of Different
Architectural Styles, Their Challenges, and Achievements

Industry case studies reveal that transitioning from monolithic to microservice architectures yields significant
benefits, such as increased productivity, improved deployment frequency, and reduced downtime. For example, a
leading e-commerce company reported a 30% reduction in downtime and faster feature rollouts after adopting
microservices, enabled by independent service updates and robust orchestration tools. However, these gains come
with challenges, including defining optimal service boundaries, managing distributed data consistency, and ensuring

566 Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

TexHiuHi HayKu ISSN 2307-5732

effective monitoring. Companies often struggle with workforce reskilling and the complexity of testing in distributed
environments. Successful organizations address these issues by adopting domain-driven design, leveraging cloud-
native technologies, and investing in team collaboration and monitoring infrastructure. These strategies help balance
the benefits of agility and scalability with the realities of integration and operational complexity.

Another prominent example is the experience of social networking platforms that have migrated to
microservices to handle massive user loads and complex feature sets. For instance, companies like Facebook and
Twitter initially relied on monolithic architectures but gradually transitioned to microservices to support rapid growth
and evolving requirements. RESTful APIs were widely adopted for their simplicity and broad compatibility, especially
for public-facing services and mobile applications. However, as the number of internal service-to-service calls
increased, issues such as latency and payload overhead became more pronounced.

To address these challenges, some companies introduced gRPC for internal communications, benefiting from
its high performance, efficient binary serialization, and support for streaming data. This shift enabled faster inter-
service communication and reduced infrastructure costs. At the same time, GraphQL emerged as a popular choice for
aggregating data from multiple microservices, providing clients with the ability to request exactly the data they needed
and reducing over-fetching. For example, Shopify implemented GraphQL to streamline its storefront API, resulting
in improved developer experience and more responsive applications.

Despite these achievements, organizations encountered several obstacles during implementation. These
included the need to manage multiple API paradigms, ensure backward compatibility, and maintain comprehensive
documentation. Additionally, operational challenges such as distributed tracing, monitoring, and securing service-to-
service communication required significant investment in tooling and process improvements. Companies that
successfully overcame these hurdles often did so by standardizing API gateways, adopting service meshes for
observability and security, and fostering a culture of continuous learning and cross-team collaboration.

Overall, real-world case studies demonstrate that the selection and integration of REST, GraphQL, and gRPC
in large-scale microservice systems is driven by specific business needs, technical constraints, and organizational
maturity. The most successful implementations are those that carefully evaluate the trade-offs of each technology, invest
in robust infrastructure, and prioritize clear communication and teamwork throughout the development lifecycle.

Challenges and Future Research Directions

While REST, GraphQL, and gRPC have proven to be effective architectural styles for building microservice
systems, each also presents its own set of challenges and areas where further research and development are needed.
This section will explore some of these existing problems and limitations, as well as potential future directions for
research in the field of distributed system architecture, particularly concerning these communication styles.

One of the ongoing challenges with REST lies in effectively addressing the issues of over-fetching and under-
fetching in more complex scenarios. While various strategies like HATEOAS and sparse fieldsets exist, they often
add complexity to both the server and client implementations and are not universally adopted. Future research could
explore more standardized and efficient ways to allow clients to specify their data requirements in RESTful APIs
without significant overhead. Furthermore, the evolution and versioning of RESTful APIs remain a complex problem,
and new approaches or tooling to manage these transitions more smoothly would be valuable.

GraphQL, despite its strengths in data fetching efficiency, faces challenges related to query optimization and
security. As query complexity increases, ensuring efficient data retrieval on the server becomes crucial, and research
into advanced query optimization techniques and cost analysis for GraphQL execution is an important area. Security
considerations, particularly around preventing malicious or overly complex queries from impacting server
performance, also warrant further investigation. Additionally, the development of more robust and standardized
caching solutions for GraphQL APIs is an ongoing area of interest.

gRPC, while excelling in performance for internal microservice communication, still faces challenges in
terms of broader client compatibility, especially with web browsers. While solutions like gRPC-Web exist, they often
introduce additional layers and potential performance trade-offs. Future research could focus on improving the
interoperability of gRPC with web-based clients and exploring more efficient ways to bridge the gap between the
binary nature of Protocol Buffers and the text-based expectations of web browsers. Furthermore, enhancing the
debugging and observability tooling for gRPC in complex distributed environments remains an important area.

More broadly, the increasing adoption of hybrid architectural approaches, where microservices are combined
with other paradigms like serverless computing or event-driven architectures, presents new challenges for inter-service
communication. Research into how REST, GraphQL, and gRPC can be effectively integrated with these emerging
patterns, and what new communication styles might be necessary, is crucial. Additionally, the application of artificial
intelligence and machine learning techniques to optimize communication patterns, predict potential performance
bottlenecks, or enhance the security of microservice interactions represents a promising avenue for future research.
Finally, the development of more comprehensive frameworks and best practices for choosing the most appropriate
architectural style based on specific application requirements and context remains an important area for the
community.

Conclusion

The choice of architectural style is a critical decision in the design and implementation of scalable

microservice systems. This paper has provided a comparative analysis of three prominent architectural styles: REST,

BicHuk XmesnbHUybko20 HayioHabHo20 yHigepcumemy, N4 2025 (355) 567

Technical sciences ISSN 2307-5732

GraphQL, and gRPC, evaluating their effectiveness based on key criteria such as scalability, performance,
development and integration simplicity, support for different interaction types, observability, and security.

Our analysis reveals that each architectural style offers distinct advantages and disadvantages, making their
suitability highly dependent on the specific context and requirements of the application. REST, with its simplicity and
broad ecosystem, remains a strong contender for basic CRUD operations and public-facing APIs where discoverability
is key. However, its potential for over-fetching and under-fetching can lead to inefficiencies in more complex
scenarios. GraphQL offers a client-driven approach to data fetching, providing significant benefits in terms of data
retrieval efficiency and flexibility, particularly for applications with evolving data needs. However, it introduces
increased server-side complexity and poses unique challenges for caching. gRPC stands out for its high performance
and efficient communication, making it well-suited for internal microservice interactions where low latency and high
throughput are paramount, although its browser integration can be complex.

Ultimately, the selection of the most appropriate architectural style requires a careful evaluation of the trade-
offs between these factors. There is no universally superior style; rather, the optimal choice depends on a deep
understanding of the application's specific needs, the expertise of the development team, and the overall architectural
goals. As the landscape of distributed systems continues to evolve, future research should focus on addressing the
existing challenges and exploring new approaches to inter-service communication, potentially leading to hybrid
models and more context-aware architectural decisions.

This comparative analysis provides a foundation for architects and developers to make informed decisions
when designing and building scalable microservice systems, ultimately contributing to more efficient, robust, and
maintainable applications.

JlitepaTypa

1. Omnigoc L., Moxauccon M. Iopisusibae nocrimkeras REST ta gRPC s MiKpocepBiciB y BCTAHOBICHHX
apXiTekTypax mporpamHoro 3abesneuenns / 1. OniBoc, M. Hoxanccon // Yuisepcurer Jlinueninry, Isemis. — 2023.
—46 c. — Pexxum nmoctymy: https://www.diva-portal.org/smash/get/diva2:1772587/FULLTEXTO1.pdf

2. Hiceap M., Cadpymnin P. A., Bycramin A., Acax I. OuiHka HOpOAyKTHBHOCTI MiKpOCEpBiCHOT
komyHikailii 3a momomoror REST, GraphQL ta gRPC / M. Hicsap, P. A. Cabpyanin, A. Bycramin, 1. Acsax //
International Journal of Electronics and Telecommunications. — 2024. — Vol. 70, No. 2. — C. 429-438. — doi:
10.24425/ijet.2024.149562

3. HopiBusanpauii anamiz RESTful, GraphQL ta gRPC API: Anamiz mpogyKTHBHOCTI 3a pe3yibTaTaMu
HaBaHTa)XyBaJIBHOTO Ta cTpec-tecTyBaHH: // Jurnal Sistem Informasi dan Komputer Akuntansi. — 2025. — Vol. 14,
No. 1. - C. 1-10. — doi: 10.32736/sisfokom.v14i1.2375

4. REST, GraphQL, RPC, gRPC: INopiusunbHuit anami3z / Rahul Vijayvergiya // Dev.to. — 2024. — Pexxum
nmoctytry: https://dev.to/rahulvijayvergiya/rest-graphql-rpc-grpc-3m09

5. IopiBusinas npoaykruBHocti REST mpotn GraphQL API / Ilpoekt OakanaBpchkoi aucepTamii. —
CrokroseM: Kopomiecbkuit Texuosoriunuit incturyt KTH, 2023. — 40 c¢. — Pexxum moctymy: https://www.diva-
portal.org/smash/get/diva2:1768044/FULLTEXTO1.pdf

6. Iopiusiaass SOAP vs REST vs GraphQL vs RPC API / AltexSoft. — 2020. — Pexum mocTyImy:
https://www.altexsoft.com/blog/soap-vs-rest-vs-graphql-vs-rpc/

7. OriHka IpoIyKTHBHOCTI Mikpocepricis 3a gonomorow REST, GraphQL ta gRPC / Semantic Scholar. —
2024. — Pexxum noctymry: https://www.semanticscholar.org/paper/Performance-evaluation-of-microservices-with-
REST.-Niswar-Safruddin/8526bef65e8d241155be2ce807989afc146f0b18

References

1. Olivos I., Johansson M. Comparative Study of REST and gRPC for Microservices in Established Software Architectures / I. Olivos,
M. Johansson // Linkoping University, Sweden. - 2023. - 46 c. — Access mode: https:/www.diva-
portal.org/smash/get/diva2:1772587/FULLTEXTO1.pdf

2. Niswar M., Safruddin R. A., Bustamin A., Aswad 1. Performance evaluation of microservices communication with REST, GraphQL,
and gRPC / M. Niswar, R. A. Safruddin, A. Bustamin, I. Aswad // International Journal of Electronics and Telecommunications. — 2024. — Vol. 70,
No. 2. — C. 429-438. — doi: 10.24425/ijet.2024.149562

3. Comparative Analysis of RESTful, GraphQL, and gRPC APIs: Perfomance Insight from Load and Stress Testing // Jurnal Sistem
Informasi dan Komputer Akuntansi. — 2025. — Vol. 14, No. 1. — C. 1-10. — doi: 10.32736/sisfokom.v14i1.2375

4. REST, GraphQL, RPC, gRPC: Comparative Analysis / Rahul Vijayvergiya // Dev.to. — 2024. — Access mode:
https://dev.to/rahulvijayvergiya/rest-graphql-rpc-grpc-3m09

5. Performance comparison of REST vs GraphQL APIs / Bachelor Degree Project. — Stockholm: KTH Royal Institute of Technology,
2023. — 40 c. — Access mode: https://www.diva-portal.org/smash/get/diva2:1768044/FULLTEXTO1.pdf

6. Comparing SOAP vs REST vs GraphQL vs RPC API/ AltexSoft. — 2020. — Access mode: https://www.altexsoft.com/blog/soap-vs-
rest-vs-graphql-vs-rpc/

7. Performance evaluation of microservices with REST, GraphQL, and gRPC / Semantic Scholar. — 2024. — Access mode:
https://www.semanticscholar.org/paper/Performance-evaluation-of-microservices-with-REST,-Niswar-
Safruddin/8526bef65¢8d241155be2ce807989afc146f0b18

568 Herald of Khmelnytskyi national university, Issue 4, 2025 (355)

https://www.semanticscholar.org/paper/Performance-evaluation-of-microservices-with-REST,-Niswar-Safruddin/8526bef65e8d241155be2ce807989afc146f0b18
https://www.semanticscholar.org/paper/Performance-evaluation-of-microservices-with-REST,-Niswar-Safruddin/8526bef65e8d241155be2ce807989afc146f0b18
https://www.diva-portal.org/smash/get/diva2:1772587/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1772587/FULLTEXT01.pdf
https://dev.to/rahulvijayvergiya/rest-graphql-rpc-grpc-3m09
https://www.diva-portal.org/smash/get/diva2:1768044/FULLTEXT01.pdf
https://www.altexsoft.com/blog/soap-vs-rest-vs-graphql-vs-rpc/
https://www.altexsoft.com/blog/soap-vs-rest-vs-graphql-vs-rpc/
https://www.semanticscholar.org/paper/Performance-evaluation-of-microservices-with-REST,-Niswar-Safruddin/8526bef65e8d241155be2ce807989afc146f0b18
https://www.semanticscholar.org/paper/Performance-evaluation-of-microservices-with-REST,-Niswar-Safruddin/8526bef65e8d241155be2ce807989afc146f0b18

