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ENERGY EFFICIENCY AND TOTAL COST OF OWNERSHIP  

OF MULTI-LAYER DATA STORES 
 
Enterprises now expect the same data platform to serve business-intelligence SQL, relationship analytics and large-

language-model–driven semantic search. The practical response is a poly-store that combines a Lakehouse core with graph and 

vector indexes. Although performance benefits are well documented, quantitative evidence of operational footprint – energy 

demand, carbon emissions and total cost of ownership (TCO) – is scarce. 

This paper presents a thirty-day, twelve-hours-per-day benchmark that compares an NVMe-backed ClickHouse cluster 

with a three-layer prototype (Delta Lake + Neo4j + Milvus) deployed on Microsoft Azure and Amazon Web Services. The workload 

blends 40 % TPC-DS OLAP queries, 30 % LDBC graph traversals, 20 % ANN-Bench vector searches and a 10 % change-data-

capture (CDC) ingest stream. For every 100 000 successful queries were recorded watt-hours via the providers’ Energy/Emissions 

APIs, dollars at April-2025 list prices and a sustainability-adjusted TCO (TCO-S) that monetises CO₂-equivalent emissions at 80 

$ t⁻¹. 

Under steady load, the poly-store burns around 34 % less electricity and lowers TCO-S by around 27 % thanks to 

serverless compute de-allocation, specialised query engines and 2.7× columnar compression. A 30-minute CDC surge that 

quadruples ingest rate doubles both metrics unless tiered SSD caching and simple back-pressure are activated. These mitigations 

cap the spike at +38 % energy and +31 % cost. Migrating only the object-storage bucket from a high-carbon (around 230 g CO₂e 

kWh⁻¹) to a low-carbon (around 25 g) region trims TCO-S by a further 11 % without breaching a 100 ms latency budget. 

The contribution is threefold: the first cloud-native dataset that unites relational, graph and vector modalities with energy 

metrics, the one-number TCO-S indicator that fuses financial and ESG perspectives and  a reproducible experimental setup 

demonstrating consistent results with minimal variance (≤ 5 % variance). Findings recommend Lakehouse poly-stores for everyday 

analytics, advise SSD caching for bursty ETL and highlight geography as a low-hanging optimization lever for carbon-aware data 

platforms. 
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ЗУБАЛЬ БОГДАН 

Національний університет «Львівська політехніка» 
 

ЕНЕРГОЕФЕКТИВНІСТЬ ТА ЗАГАЛЬНА ВАРТІСТЬ ВОЛОДІННЯ  

БАГАТОРІВНЕВИМИ СХОВИЩАМИ ДАНИХ 

 
Сучасні аналітичні платформи дедалі частіше мають підтримувати SQL-запити, графові обходи та векторний пошук. Як 

компроміс сформувалася полі-стор-архітектура Lakehouse-класу, що поєднує колоночне сховище з графовими та векторними індексами. 

У статті представлено експеримент тривалістю 30 днів, у якому порівнюються ClickHouse та тришаровий стек Delta Lake + Neo4j + 

Milvus у хмарах Azure та AWS. Навантаження охоплювало TPC-DS, LDBC, ANN-Bench і CDC-інжест. Для 100 тис. запитів фіксувалися 
споживана енергія, фінансові витрати та викиди CO₂. Запропоновано інтегральний показник TCO-S, що враховує не лише вартість 

володіння, а й карбоновий еквівалент ($80/т CO₂). 

Результати показали, що полі-стор-архітектура дає змогу зменшити енергоспоживання приблизно на близько 34 % і TCO-S 
на 27 %, а оптимізація кешування та географії розміщення даних забезпечує ще до 11 % додаткової економії.  
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Problem statement 

Digital services increasingly demand three-modal analytics demand: classical SQL reporting, graph traversal 

for relationship intelligence, and vector similarity queries that power large-language-model features. ‘One-size-fits-

all’ databases struggle to satisfy all three latency and elasticity profiles concurrently. A pragmatic response is the 

Lakehouse-centric poly-store: columnar object storage as the single source of truth, plus projections into specialised 

graph and vector engines. Advocates claim lower administrative overhead and near-native performance, when sceptics 

point to synchronization cost and opaque energy footprints. 

Chief Financial Officers (CFOs) and Environmental, Social & Governance (ESG) officers now evaluate 

cloud proposals through two intertwined lenses: 

● OPEX & CAPEX – the classical TCO equation 

● Carbon impact – kilograms of CO₂-equivalent emitted per query 

Analysis of recent sources 

Lakehouse architecture has emerged as a unifying paradigm for analytical workloads, combining the 

strengths of data lakes and data warehouses. Armbrust et al. laid the groundwork for Delta Lake, emphasizing 

transactional guarantees over cloud object storage [1]. Subsequent surveys highlighted functional advantages but 

overlooked sustainability: Saggi and Jain traced the big-data value chain without cost-or-energy metrics [2], while 
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van Renen and Leis benchmarked cloud warehouses yet excluded carbon or vector workloads [3]. Zeng et al. expanded 

empirical evaluation of columnar formats, again leaving environmental factors aside [4]. 

In the broader context of cloud economics, Kurowski and Nabrzyski developed formal models for total cost 

of ownership (TCO) in virtualized environments [5], yet their framework stops short of incorporating environmental 

externalities such as carbon emissions. Koot and Wijnhoven projected data-centre power demands under usage growth 

scenarios [6] but did not disaggregate consumption by storage architecture or workload type. More fine-grained 

measurements were later provided by Li et al., who quantified power draw for multimodel clusters [7], and by Ordonez 

et al. and Buyya et al., who surveyed energy-aware analytics and sustainability practices in new-generation clouds [8]. 

A growing body of work now addresses energy-aware cloud computing. CASPER from Souza et al. and 

GreenCourier from Chadha et al. demonstrated scheduling that reacts to real-time carbon signals [10, 11], yet both 

studies remained at the infrastructure layer. Adaptive execution engines for Lakehouses were recently proposed by 

Xue et al. [12], but their evaluation focused on latency and throughput alone.  

Benchmarking studies such as Schneider et al. and the ACM SoCC case studies report performance 

comparisons of data warehouses in cloud settings but do not account for vector or graph workloads, which are 

increasingly relevant in AI-enhanced analytics [13, 14]. Meanwhile, practical initiatives like Microsoft’s 

Sustainability Pillar and AWS’s Carbon Optimization Guidelines provide architectural advice but are not grounded in 

peer-reviewed empirical data [15, 16]. 

Consequently, a clear gap remains in the literature: no prior study has performed a reproducible, cross-

platform, 30-day comparison between a three-layer poly-store stack and an optimized ClickHouse-based single-engine 

alternative, under realistic cloud billing and carbon footprint data. This paper fills that gap by proposing a unified 

metric (TCO-S) that integrates cost, energy, and emissions, and applies it in controlled experiments on Azure and 

AWS infrastructure. 

Study objectives 

The overarching aim of this work is to produce a quantitative, cloud-native comparison of a Lakehouse-

centred poly-store [2, 3] and an optimised ClickHouse deployment, and, on that basis, to introduce a single composite 

indicator – TCO-S that couples classical ownership cost with the monetary value of carbon emissions [9]. To achieve 

the aim, the investigation must stand up identical test beds on Microsoft Azure and Amazon Web Services, each 

featuring Delta Lake as the relational core [1] with Neo4j and Milvus acting as graph and vector projections 

respectively, while ClickHouse serves as the monolithic reference, drive both architectures with a reproducible mix 

of OLAP, graph, vector and change-data-capture traffic that mirrors real production ratios [3. 4], record, for every 

hundred thousand successful queries, the watt-hours reported by provider energy APIs [8], the charges that accrue at 

April 2025 list prices [15, 16], and the kilograms of CO₂-equivalent emitted [6], translate those primary metrics into 

TCO-S and analyse how they react when ingest throughput is abruptly quadrupled and examine whether relocating 

only the object-storage bucket to a low-carbon region yields a material improvement without harming user-visible 

latency [10, 11]. The resulting data set, and open benchmark harness are intended to provide DevOps teams with 

evidence-based guidance on energy, cost and carbon trade-offs when choosing between monolithic and multi-layer 

cloud data platforms. 

Presentation of basic material 

Designing a benchmark that captures the daily reality of enterprise analytics requires three ingredients: a 

representative mix of queries, cloud infra review big-data value chains but omit energy structure that scales like 

production, and metrics that simultaneously reveal performance, money, and carbon [3, 4]. The paragraphs below knit 

those pieces together into a single, reproducible protocol. 

Workload mix. Most data teams today juggle classical BI dashboards, near-real-time fraud graphs, and LLM-

backed semantic search. To mirror that pattern, each run was blended from four phases (Table 1). Forty percent of 

queries come from the 100 GB TPC-DS suite, executed by thirty concurrent users, this stresses star-schema joins and 

window functions. Graph work – thirty percent replays the LDBC Social Network Benchmark “interactive short read” 

profile, exploring paths up to five hops. Vector similarity (twenty percent) is modelled with ANN-Bench on 512-

dimensional sentence embeddings, retrieving the ten closest neighbours by cosine distance. Finally, ten percent of the 

schedule is a steady CDC ingest stream (Debezium at 50 MB·s⁻¹) that forces every architecture to maintain freshness 

while the read traffic continues. 

Table 1 

Workload composition per run 

Phase Share Benchmark profile 

OLAP 40% TPC-DS 100 GB, 30 concurrent users 

Graph 30% LDBC SNB interactive short-reads, 5-hop paths 

Vector 20% ANN-Bench, 512-dim embeddings, top-10 cosine 

ETL 10% Debezium CDC stream, 50 MB s⁻¹ 
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Cloud test beds. Because procurement choices rarely stop at one provider, deployments were conducted on 

both Microsoft Azure and Amazon Web Services. Each runs two flavours of architecture: 

● a monolithic reference – ClickHouse 24.1 on four NVMe VMs, tuned for low-latency column scans 

● a Lakehouse-centric poly-store comprising Delta Lake tables on object storage, Spark 3.5 for compute, 

Neo4j Aura DS for graph projections, and Milvus 2.4 for vector search. 

All tiers auto-scale between two and sixteen workers, matching common SRE guard-rails (Table 2).  

 

Table 2 

Infrastructure profiles 

Layer Azure service AWS service 

SQL engine Synapse Serverless (Gen2) Redshift Serverless 

Lake core ADLS Gen2 + Delta Lake on Spark 3.5 S3 + Delta Lake on EMR 6.16 

Graph Neo4j Aura DS (M30) Amazon Neptune Serverless 

Vector Milvus 2.4 on AKS Milvus 2.4 on EKS 

Monolith 4 × Standard D8ads v5 4 × m6gd.2xlarge 

 

Metric trio. As performance alone is no longer considered persuasive, three orthogonal metrics are logged 

for every 100,000 successful queries: 

● Wh/100 k queries – aggregated rack-level power via Azure/AWS Emissions & Energy APIs. [15, 16] 

● $/query – on-demand price list of April 2025. Spot and reserved discounts disabled. 

● Sustainability-adjusted TCO (TCO-S). This metric is defined as: 

𝑇𝐶𝑂 − 𝑆 = (𝐶𝐴𝑃𝐸𝑋 + 𝑂𝑃𝐸𝑋) × (1 +
𝐶𝑂2𝑒[𝑘𝑔] × 80 

1000
) (1) 

where: 

• CAPEX denotes capital expenditures, including infrastructure, hardware, and licensing costs. It appears 

only for the ClickHouse VMs (three-year straight-line amortisation). 

• OPEX captures operational expenditures such as compute hours, storage, energy consumption, and cloud 

service fees 

• CO₂e is the total volume of carbon dioxide equivalent emissions generated by the workload, measured in 

kilograms 

• 80 USD/t reflects a monetary valuation of emissions based on prevailing estimates of social cost of carbon 

or internal carbon pricing strategies (i.e., 80 USD per metric ton of CO₂e) 

Run cadence. Each benchmark day begins with a 60-minute warm-up – filling caches and stabilizing 

autoscalers  followed by five hours of steady workload. This cycle was repeated twelve hours a day for 30 consecutive 

days, long enough to capture price fluctuations, spot hardware failures, and weekly ETL peaks that trip many real-

world clusters. 

With this unified design – representative queries, cloud-agnostic IaC, and metrics that speak the language of 

both engineers and CFOs – the experiment supplies the factual bedrock for the analysis that follows. 

Running the benchmark for 30 consecutive days, 12 hours per day, generated around 0.29 billion queries, 

around 310 GB of raw energy logs, and around 780 auto-scaling events. Even in this shorter window, three patterns 

still stand out: 

● a clear steady-state edge for the poly-store, 

● a burst-ingest penalty that must be mitigated, and 

● a strong carbon-location effect. 

Table 3 shows watt-hours per 100 000 queries, dollars per query and the composite TCO-S metric during the 

five-hour steady interval of every daily run (75 hours total). 

Table 3 

Steady-State metrics 

Platform Wh/100 k $/query CO₂e kg / 10⁶ queries Δ TCO-S vs CH 

ClickHouse 4870 $0.021 2.40 – 

Poly-store Azure 3 210 $0.016 1.63 -27 % 

Poly-store AWS 3 340 $0.017 1.69 -23 % 
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The energy and cost gaps repeat the 30-day pattern because they depend on per-query efficiency, not test 

length: 

● Serverless SQL compute idles at zero load. 

● Specialised engines burn fewer cycles per result. 

● Columnar compression cuts I/O joules by around 2.7 × [2]. 

Moving only the object-store bucket from West Europe (around 230 g CO₂e kWh⁻¹) to Sweden Central 

(around 25 g) still trims TCO-S by around 11 % and leaves p95 latency unchanged (> 100 ms budget), confirming 

Ordonez et al. 

● Under normal traffic: the Lakehouse-centric poly-store remains greener and cheaper. 

● Under bursty ingest: apply SSD caching or RL-based throttling, or the benefit disappears. 

● Across regions: pick the lowest-carbon object store first, then tune compute. 

Because grid intensity varies by region, shifting only the object-storage bucket from Azure West Europe 

(around 230 g CO₂e kWh⁻¹) to Sweden Central (around 25 g) lowered the sustainability-adjusted cost (TCO-S) by 

around 11 % while keeping p95 latency within the 100 ms SLA. The result echoes ESG findings by Ordonez et al.: 

geography can outweigh engine choice once carbon is monetized. 

In sum, for day-to-day analytics the Lakehouse poly-store is greener and cheaper. During bursty ETL it needs 

caching or throttling, and for long-term ESG targets the cheapest optimisation may be to relocate cold object storage 

to the lowest-carbon region before tuning any compute knob. 

Conclusions 

This study offers four principal contributions with direct industrial relevance. First, it provides the first 

publicly reproducible measurement of energy consumption and total cost of ownership (TCO) for a three-layer 

Lakehouse stack integrating SQL, graph, and vector workloads across two major cloud platforms. Although earlier 

surveys are focused on the functional benefits of poly-store architectures, empirical energy data were not available. 

That gap is addressed through a one-month experiment. Second, a new metric, TCO-S, is introduced – a single 

monetary value that incorporates a carbon cost component into classical TCO. As ESG metrics are increasingly 

reported alongside financial KPIs, this “one-number” approach makes it easier to make system-level architectural 

decisions. Third, the hidden cost of cross-layer ETL is quantified: in the absence of mitigation, the projection pipeline 

adds approximately three watt-hours per thousand ingested rows and can double both energy use and carbon emissions 

during peak loads. But, when tiered caching and back-pressure are on, the rise is limited to around 38%. 

And the results warrant a clear interpretation. Under steady, mixed workloads the poly-store reduces energy 

consumption by about one-third and lowers TCO-S by a quarter relative to an NVMe-backed ClickHouse cluster. 

Three factors explain the margin: serverless SQL compute idles at zero cost, while dedicated ClickHouse nodes 

consume resources continuously, even when the queue is empty, specialized engines such as Neo4j and Milvus execute 

relationship traversals and k-NN search with fewer CPU cycles than generic SQL JOINs or user-defined functions 

and he columnar Delta-Parquet format compresses “cold” data by a factor of 2.7 compared with row-oriented 

segments. But the very layered architecture that is so good for saving energy during reads can also be a liability during 

a bursty ingestion cycle, because each upstream added row must get rematerialized in three different indexes, 

multiplying the computational cost and carbon footprint. 

No field experiment is entirely immune to validity threats. The reported cost figures are based on cloud 

pricing as of April 2025. Future changes in discounts or regional configurations could shift the results in either 

direction. Default auto-scaling heuristics provided by each cloud platform were used, alternative strategies – such as 

custom configurations or reinforcement learning-based policies – could improve resource utilization in monolithic 

deployments and reduce the observed performance gap. Deep graph analytics tasks, including PageRank and 

community detection, were excluded to maintain feasible runtimes. However, these workloads alter CPU-to-I/O ratios 

and may yield different outcomes, potentially favouring columnar storage. Additionally, cloud sustainability APIs 

report regional averages, and intraday fluctuations in grid carbon intensity – often exceeding 10% are not reflected in 

the measurements. 

And while there are limitations to the study, these findings provide a practical level of insight that can inform 

architectural decisions in the real world. For majority of enterprise scenarios that involve business intelligence, graph 

analysis, and semantic search, a poly-store design built around a Lakehouse core strikes a strong balance between 

cost, performance, and sustainability – especially if data ingestion spikes are kept under control. In the near term, 

teams can already benefit from some simple best practices: storing cold data in low-carbon regions, enabling caching 

tiers on ingestion nodes, and including ETL-related energy usage in their operational dashboards. 

Looking forward, there are plans to embed reinforcement learning agents into tools like KEDA or Knative to 

make autoscaling smarter – adjusting not just to workload demand but also to live carbon intensity metrics. 
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