TexHiuHi HayKu ISSN 2307-5732

DOI10.31891/2307-5732-2024-333-2-69
VJIK [004.021:004.91]+004.415.53
YUSYN YAKIV

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
https://orcid.org/0000-0001-6971-3808

e-mail: yusyn@pzks.fpm.kpi.ua

RYBACHOK NATALITA

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
https://orcid.org/0000-0002-8133-1148

e-mail: rybachok@pzks.fpm.kpi.ua

IMPROVEMENT OF THE DETERMINISTIC METHOD
OF THE TEXT DATA CORPORA GENERATION

This paper is devoted to the issue of generating corpora of text data for their use in solving software engineering
problems in the context of developing information systems for natural language processing (NLP). One of the methods intended
for this is the basic CorDeGen method, however, the analysis revealed certain disadvantages. Such a disadvantage is that NLP
methods at the pre-processing stage can remove part of the terms generated by this method from the texts, treating them as
stop words of a certain language. Removing part of the terms leads to the fact that the distribution of terms between the texts
predicted by the CorDeGen method is distorted and the obtained result of processing the corpus with a certain NLP method is
significantly different from the expected one.

To solve this disadvantage, a new modified CorDeGen+ method is proposed in the paper, which introduces an
additional, language-dependent stage of checking each generated term for admissibility, and if necessary, replacing it with
another one. At the same time, all the advantages of the basic CorDeGen method are preserved by the proposed method, as well
as other possible disadvantages, except for the corrected one. The paper examines language variations of the proposed method
for the four most common European languages and a variation for languages that use non-Latin letters.

The conducted experimental test showed the effectiveness of the CorDeGen+ method in terms of correcting the
described disadvantage of the basic CorDeGen method. Also, this test showed that the degree of slowdown of the corpora
generation process due to the introduction of an additional stage depends on the corpus size. In the case of micro-corpora (100
unique terms), the degree of slowdown reaches 39%, but as the size of the corpus increases, the degree drops sharply, and for
super-large corpora (312500 unique terms) it reaches a maximum of 6.8%.

Keywords: natural language processing; software quality assurance; text data corpora; corpora generation;
CorDeGen method.

IOCHH AKIB, PUBAYOK HATAJIISA

Harionansanit TexHiuaMit yHiBepcuTeT YKpainn « KuiBcekuii mosmiTexHiuAmit iHCTUTYT iMeHi Iropst Cikopchkoroy
NOKPAIIEHHA JETEPMIHOBAHOI'O METOJ4Y 'EHEPYBAHHS KOPITYCIB TEKCTOBUX JAHHUX

/Jlana po6oma npucesiueHa npobaemamuyi 2eHepy8aHHs KOpNycie mekcmoagux daHux 015 ix BUKOpUCMAHHS nid Yac eupiuieHHs
3aday iHxceHepii npozpamMHO20 3a6e3neyeHHs1 8 KOHMeKcmi po3po6ieHHs iHgpopmayiliHux cucmem 06po6ieHHSI NpupooHoi Mogu. OOHUM i3
Memodie, npusHayeHux 04151 Yybozo, € 6azosuti memod CorDeGen, npome nposedeHull aHai3 ausigus 1io2o negHi Hedoiku. Takum HedoaiKoM
€ me, Wo Memoodu 06pob.1eHHs NpUpPoOHOi MO8U HAa emani nonepedHb020 06PO6AEHHS MOHCYMb 8UIAISIMU I3 MeKcmie YacmuHy 2eHepo8aHux
daHum memodom mepmis, po3yiHWYU iX K cmon-c108a nhegHoi mosu. BudaseHHss wacmuHu mepmig npu3godums 00 mozo, ujo
neped6auenuti memodom CorDeGen po3nodin mepmis Mixe mekcmamu cnomeoproemscsi i ompumaHuil pesysabmam 06po6aeHHs Kopnycy
negHUM mMemodom 06pob6.1eHHS1 npupoOHOi MOBU 3HAYHO BiIOPi3HsIEMbCS 8I0 0UIKY8AHO20.

Jlns supiwenHs daHoz2o Hedo.iKy 8 po6omi 3anponoHosaHo Hosull Modugikoearuti memod CorDeGen+, wo 86odums dodamkosutl,
MOBHO3a/1e24CHULl eman nepesipku KOXCHO20 2eHep08aH020 mepma Ha donycmumicme, i y pasi Heob6xioHocmi — 3amiHu tio2o Ha iHwull. [Tpu
yvbomy, eci nepesazu 6aszosozo memody CorDeGen 36epieaiombcsi 3anponoHO8AHUM MmemodoMm, sIK 1 [Hwi Moxcausi Hedosiku, Kpim
sunpas/ieHoz20. B po6omi poszassHymo moeHi eapiayii 3anponoHo8aHo2o mMemody 0/151 YOmupboX HAlinowupeHiwux €aponeticbkux Mo ma
sapiayilo 0151 M08, W0 BUKOPUCMO8YIOMb He IAMUHCLKI Aimepu.

IIposedeHa ekcnepumeHmanvHa nepegipka nokaszaaa egexkmushicmo memody CorDeGen+ y uacmuHi @unpas/ieHHsl ONUCAHO20
Hedosiky 6a308020 memody CorDeGen. Takodc daHa hepegipka nokasasa, Wo cmyniHb ynogi/ibHeHHs1 Npoyecy 2eHepy8aHHsl Kopnycie yepes
8sedeHHs 000amKo8020 emany 3a/excums 8id poamipy kopnycy. Y eunadky mikpo-kopnycia (100 yHikaabHUx mepmie) cmyniib ynogi/ibHeHHs
csizae 39%, npome 3i 36i1bWeEHHAM PO3MIipy Kopnycy cmpimko nadae i 041 Hadseaukux kopnycie (312500 yHikaabHux mepmig) ckaadae
MaKcumyMm 6.8%.

Katouosi cnosa: 06pobaeHHs: npupodHoi Mo8U; 3a6e3neyeHHs1 IKocmi npo2pamHo20 3a6e3nedeHHs); Kopnyc mekcmogux 0aHux;
2eHepysaHHs kopnycie; memod CorDeGen.

Introduction

Information systems dedicated to solving various tasks of natural language processing have become
widespread today and are used in everyday life and many areas of human professional activity. Due to the peculiarities
of the field of natural language processing, solving various software engineering tasks during the development of such
information systems can be complicated. One of the peculiarities of this field that complicates the development process
of information systems is that they often work with corpora (or collections) of text data.

When solving software engineering tasks for natural language processing information systems, there may be
a need for a large number of different corpora of text data. An example of such a task would be quality assurance —
using certain testing methodologies, such as property-based testing or metamorphic testing, requires hundreds or even
thousands of corpora. In such a case, it is impossible to limit testing to a few, pre-prepared and calculated corpora, so

BicHuk XmenbHUYybko20 HayioHa1bHo20 yHigepcumemy, No2, 2024 (333) 437

Technical sciences ISSN 2307-5732

the question of generating corpora on demand arises. Today, the problem of corpora generation methods adapted for
use specifically in solving software engineering tasks is poorly studied, although the need for such methods does not
diminish over time. That is why the development of new and improvement of existing methods of generating corpora
of text data for their use in solving software engineering tasks is and remains an urgent task.
Analysis of recent research

Currently, there are many studies devoted to the generation of text data corpora for use in various natural
language processing tasks (e.g., [1-4]), but most of them have little applicability to solving software engineering tasks.
This is due to various factors, the main ones of which are the following:

e The need for a large amount of natural data for corpus generation.

e Low performance.

e The absence of the possibility of a priori determination of the result of processing the generated corpus

by various methods.

In paper [5], the authors proposed a method for generating corpora of text data called CorDeGen, which was
developed specifically for its use in solving software engineering tasks. The steps of the abstract CorDeGen method
are shown in Fig. 1 [5].

Method 1. Abstract CorDeGen method
Input parameter N, . (number of unique terms)

—

Calculation of the number of documents N, ., using the function f(x)

2
3: For each term i

4: Receive the string representation of the term
5

Calculation of the vector #f , containing the number of occurrences of the term in
documents, using the calculation of the function g(x)
6: Record to each document of the string representation of the term, based on the calculated
number of occurrences
Figure 1. The abstract CorDeGen method

The description of the abstract CorDeGen method does not specify a specific method of receiving a string
representation of a term and specific functions f(x) or g(x), because if certain conditions are met, this has little

effect on the behavior of the method and the obtained results.
Based on the definition of the abstract method, the basic CorDeGen method is presented in [5], which determines
the necessary elements in the manner given in formulas (1) — (3):

terMsiying: itoa(i, 16), (1)
f0: | Vx|,)
0,j¢ (c;—71..ci+r1)

gty = 12 2Nl-,j E(c,—T..c;+1),j+ Ci,where

2
N:i=c
2r+2 v T
¢; = imod N5,
N
oo]
N; = Ndocs(i mod Nggcs + 1)- 3)

In such a variant, the algorithm implementing the basic CorDeGen method has asymptotic computational
complexity O(N*®) [5].

The advantages of the basic CorDeGen method for solving software engineering tasks are [5]: full
determinism of the generation process; the minimum possible number of input parameters (only one — the size of the
corpus, expressed via the number of unique terms); providing the possibility of a priori determination of the structure
of the generated corpus and the result of its processing.

However, the basic CorDeGen method also has disadvantages and/or limitations. One such disadvantage is
related to the use of hexadecimal numbers as terms, because most natural language text processing methods (and
therefore most of its software implementations) involve preprocessing the texts, such as removing stop words for a
given natural language. Accordingly, if the software does not provide for turning off such pre-processing (or choosing
a “neutral” language with an empty dictionary of stop words), then part of the terms from the generated texts can be
deleted. For example, if the software implementation of the natural language processing method considers any texts
as written in English, then the term “a” (index 10) will be deleted because it completely matches the article. Also,
decimal numbers are often included in the lists of stop words, which makes this disadvantage relevant in the case of

438 Herald of Khmelnytskyi national university, Issue 2, 2024 (333)

TexHiuHi HayKu ISSN 2307-5732

methods for languages based on the non-Latin alphabet too.

This disadvantage, due to the removal of part of the terms, leads to a change in the distribution of terms
between the generated texts and, accordingly, makes it difficult to determine the expected result of processing the
generated corpus. This work is dedicated to correcting this disadvantage.

Formulation of the goals of the article

The aim of the paper is to eliminate the disadvantage of the basic CorDeGen method of generating text
corpora by developing such a modified and improved method that the text corpora generated with its help will not
contain terms similar to stop words.

Presentation of the main material
CorDeGen+

A new modification of the basic CorDeGen method, named CorDeGen+, is proposed to solve the above-
described disadvantage.

The main idea of this modification is that after obtaining a string representation of a term (by converting it
to the hexadecimal number system), it is necessary to check whether the received representation falls into the list of
stop words of a given language. If it hits, a new string representation must be obtained and checked; this step must be
repeated until the resulting string representation no longer falls into the list of stop words. Accordingly, the
CorDeGen+ method introduces two additional functions: 7(x) — the function of obtaining a new representation of the

term and v(x) — the function of checking whether the term is included in the list of stop words.
Thus, the abstract CorDeGen+ method consists of the steps shown in Fig. 2.

Method 2. Abstract CorDeGen+ method

11 Input parameter N rerms (number of unique terms)

2: Calculation of the number of documents N, ., using the function f(x)

3: For each term i

4: Receive the string representation of the term

5: While the string representation of the term is prohibited (v(x) = 'DENY")

6: Receive the new string representation of the term using the function r(x)

7: Calculation of the vector #, containing the number of occurrences of the term in
documents, using the calculation of the function g(x)

8: Record to each document of the string representation of the term, based on the calculated

number of occurrences
Figure 2. The abstract CorDeGen+ method

Since in most cases, the additional step 6 will be performed 0 or 1 times, the computational complexity of
any algorithm implementing the CorDeGen+ method remains the same compared to the basic CorDeGen method —
O(N™).

Obviously, the function v(x) depends on the particular natural language being considered, so the entire
CorDeGen+ method is language-dependent. Next, variations of the proposed CorDeGen+ method for the most
common European languages will be considered: English (CorDeGen+V), German (CorDeGen+®P), French
(CorDeGen+R) and Italian (CorDeGen+!D). The development of separate variations of the method for a specific
language allows not to enter an additional input parameter with a list of stop words and also allows optimization of
the algorithm for determining whether a term belongs to exclusions. As for languages not based on the Latin alphabet,
for any such language, it is possible to use the same variant of the CorDeGen+ method, which will filter out only
decimal numbers as stop words. This variant of the method is called CorDeGen+®-9),

Unlike the function v(x), the function #(x) does not depend on the specific natural language chosen. The
simplest way to implement this function is to use the same hexadecimal representation (thus, no new algorithms or
functions are introduced, which does not complicate the implementation of the method), but for the term index with a
certain shift s . That is, if the hexadecimal representation of the term index falls into the list of stop words, the
proposed function #(x) will return the hexadecimal representation of the index i+.s. If the hexadecimal

representation of this term index also falls into the stop word list, then the index i + 2s representation will be returned,
and so on. Given that, according to the original CorDeGen method, the indices are in the range from 0 to N,,,.,.. (not

inclusive), the value of N,

orms Can be used as the shift § value. Thus, the shifted indexes will never overlap with the

original indexes.
To implement the function v(x) in the case of CorDeGen+EV, the list of stop words for the English

language, given by the link [6], is taken as a basis. This list contains 733 stop words, but most of them cannot be
generated by the CorDeGen method because they contain letters outside the [a-f] range. There are only seven words

BicHuk XMeAbHUYbKO20 HAYioHa1bHO20 yHisepcumemy, Ne2, 2024 (333) 439

Technical sciences ISSN 2307-5732

in total, which consist only of letters allowed in the hexadecimal numbering system: a, b, be, f, d, c, e. Also, as
mentioned above, we will additionally consider all representations containing only decimal numbers — 0, 12, 439, etc.
—to be prohibited (this is also true for other language variations). Considering everything described above, the function
w(x) of the CorDeGen+EN implementation can be presented as follows:

o If the length of the hexadecimal representation x is 1, then it is forbidden (it either contains a decimal

number or falls into the original stop word list).

e If the hexadecimal representation x is “be”, then it is forbidden.

e If the hexadecimal representation x contains only decimal digits, then it is forbidden.

e Otherwise, it is allowed.

To implement the function v(x) in the case of CorDeGen+PP, the list of stop words for the German
language, given by the link [7], is taken as a basis. Of the 620 stop words in this list, eight can be generated by the
CorDeGen method: a, b, ¢, d, e, f, ab, da. Also considering the exclusion of decimal numbers, the function v(x) of
the CorDeGen+P®) implementation can be given as follows:

o If the length of the hexadecimal representation x is 1, then it is forbidden.

e If the hexadecimal representation x is “ab” or “da”, then it is forbidden.

If the hexadecimal representation X contains only decimal digits, then it is forbidden.
e Otherwise, it is allowed.
To implement the function v(x) in the case of CorDeGen+®®), the list of stop words for the French language,

given by the link [8], is taken as a basis. This list of 691 stop words includes nine prohibited by the CorDeGen+
method: a, b, ¢, d, e, f, ce, da, de. Considering the exclusion of decimal numbers, the function v(x) of the

CorDeGen+*® implementation can be given as follows:

o If the length of the hexadecimal representation x is 1, then it is forbidden.

o If the length of the hexadecimal representation X is 2 and it is “ce”, “da”, or “de”, then it is forbidden.

o Ifthe hexadecimal representation x contains only decimal digits, then it is forbidden.

e Otherwise, it is allowed.

To implement the function v(x) in the case of CorDeGen+D, the list of stop words for the Italian language,
given by the link [9], is taken as a basis. The list (632 stop words in total) for this language contains the most words
that can be generated by the CorDeGen method (are valid hexadecimal numbers): a, b, c, d, e, f, ad, da, ed, fa, ecc,
ebbe, fece. Due to the rather large number of stop words, the function v(x) can be represented in different ways
(including decimal numbers), with different ways and degrees of optimization of the check. The simplest option is as
follows:

o If the length of the hexadecimal representation x is 1, then it is forbidden.

o Ifthe length of the hexadecimal representation x is 2 and itis “ad”, “da”, “ed” or “fa”, then it is forbidden.

e If the hexadecimal representation X is “ecc”, then it is forbidden.

o If the length of the hexadecimal representation x is 4 and it is “ebbe” or “fece”, then it is forbidden.

e If the hexadecimal representation X contains only decimal digits, then it is forbidden.

e Otherwise, it is allowed.

In the case of CorDeGen+), the function v(x) has the simplest representation (in fact, this is the last check

of each language function v(x) presented above):

e If the hexadecimal representation x contains only decimal digits, then it is forbidden.

e Otherwise, it is allowed.

The proposed modified CorDeGen+ method preserves all the main advantages of the basic CorDeGen
method: the method remains fully deterministic; in the case of using individual variations of the method for individual
languages, the number of input parameters does not increase; the distribution of terms between the texts remains
unchanged. In addition, the disadvantage of removing part of the terms from the generated texts is solved, which was
the purpose of developing this modified method.

As for the disadvantages of the proposed method, it retains all the other disadvantages of the basic method,
for example, the lack of semantics in the generated terms and texts. Compared to the basic method, the CorDeGen+
method also has its own disadvantage, namely the need to perform additional iterations. Although this does not change
the asymptotic computational complexity of the algorithm, in practice its software implementations will run slower
than a similar implementation of the basic method (which will be shown later).

Considering the above-described advantages and disadvantages of both methods and their resulting limits of
applicability, Fig. 3 shows a decision tree for choosing between the basic CorDeGen method and the proposed
CorDeGen+ method.

440 Herald of Khmelnytskyi national university, Issue 2, 2024 (333)

TexHiuHi HayKu ISSN 2307-5732

A CorDeGen
NO
Are stop words being
?
removeds /4 CorDeGen
YES YES

Is it possible to disable

deletion?
/{ CorDeGen+
NO YES

Is accuracy more important
than speed?

NO
\4 CorDeGen

Figure 3. Decision tree for choosing between the basic and the proposed method

Reference implementation
The proposed language variations of the developed CorDeGen+ method and the basic CorDeGen method are
implemented in the C# programming language on the .NET 8 platform (NET SDK 8.0.200 / NET Runtime 8.0.2).

The developed reference implementation consists of several software artifacts (modules) of different types,

which contain different functionalities:

e A software library (CorDeGen) containing implementations of the basic method and proposed language
variations of the modified CorDeGen+ method. This library can be connected to any existing or new
project on the NET platform (programming languages C# / F# / etc.) to provide corpora generation
capabilities.

e Two software artifacts (CorDeGen.Tests.Unit and CorDeGen.Tests.Integration) containing unit and
integration tests for the developed implementations. The developed tests are implemented based on the
xUnit [10] and FsCheck [11] libraries and can be run using the basic dotnet test command.

o A software artifact (CorDeGen.Benchmark) containing performance tests of the developed
implementations (see below).

e A command-line interface application (CorDeGen.CLI) that uses the CorDeGen library to provide the
ability to generate corpora for the end user.

Experiments: benchmarking

In order to study the effect of slowing down the process of generating text data corpus when using variants
of the proposed CorDeGen+ method, benchmarking was performed within the framework of this study, using the
developed software implementation.

The BenchmarkDotNet library [12], which is standard on the .NET platform, was used to write and run
benchmarks of developed implementations of language variations of the proposed CorDeGen+ method. This library
greatly simplifies the benchmarking process by automatically selecting the required number of methods call
repetitions, automatically performing warm-up and jitting [13]. Also, this library automatically performs statistical
processing of the obtained results [13].

As values for the corpus size parameter during benchmarking, members of the geometric progression series

with the parameters b, =100,g =5,n =6 were used. The choice of such a progression step is because it is the closest

integer value to 110 , therefore, with such a progression step, with each new value of the corpus size parameter, the
generation time will increase approximately 10 times (with the theoretic asymptotic computational complexity of the

method algorithm equal to O(N 1’5)). As the first term of the series, the value 100 is chosen so that the sixth, last

value is large enough, but such that it can also be encountered in practice.

The results of benchmarking on a physical machine (CPU: 6 physical / 12 logical cores, 2.60GHz; RAM: 16
Gb, 2667 MHz) are shown in Table 1.

As can be seen from Table 1, the length of the interquartile range for all methods and variations is small in
relative terms, which indicates sufficient accuracy of the obtained results.

Fig. 4 shows the ratio of the mean corpus generation time (arithmetic) by each proposed language variation
of the CorDeGen+ method to the mean corpus generation time (arithmetic) of the same size by the basic method.

BicHuk XmenbHUYybko20 HayioHa1bHo20 yHigepcumemy, No2, 2024 (333) 441

Technical sciences ISSN 2307-5732

Table 2
Efficiency testing results (100 — 312500 unique terms)
Method | Min | Q1 | Median | Q3 | Max
100 unique terms (us)

CorDeGen 13.251 13.281 13.304 13.355 13.409
CorDeGen+- 17.539 17.591 17.611 17.669 17.789
CorDeGen+EN 17.746 17.935 17.967 18.058 18.191
CorDeGen+(PF) 17.911 18.157 18.393 18.415 18.511
CorDeGen+(R) 18.068 18.190 18.385 18.605 18.688
CorDeGen+(D 18.227 18.292 18.683 18.721 18.812

500 unique terms (us)

CorDeGen 100.921 104.917 105.044 105.143 106.025
CorDeGen+- 133.814 134.011 134.121 134.429 134.69
CorDeGen+EN 130.421 131.264 131.438 131.564 131.973
CorDeGen+(PF) 124.917 129.257 130.722 130.846 131.354
CorDeGen+(R) 131.153 132.031 132.294 132.603 132.832
CorDeGen+(D 132.569 132.741 132.918 133.194 133.632

2500 unique terms (ms)

CorDeGen 1.241 1.285 1.291 1.293 1.296
CorDeGen+- 1.389 1.408 1.426 1.436 1.462
CorDeGen+EN 1.445 1.457 1.464 1.501 1.505
CorDeGen+(PF) 1.428 1.456 1.458 1.462 1.464
CorDeGen+(R) 1.483 1.550 1.554 1.556 1.565
CorDeGen+(D 1.402 1.412 1.441 1.443 1.45

12500 unique terms (ms)

CorDeGen 13.141 13.313 13.417 13.455 13.69
CorDeGen+-) 13.873 14.014 14.102 14.193 14.333
CorDeGen+EN 13.693 13.788 13.824 13.982 14.139
CorDeGen+(PF) 13.909 14.101 14.174 14.304 14.45
CorDeGen+(R) 13.424 13.589 13.705 13.767 13.85
CorDeGen+(D 13.333 13.591 13.631 13.695 13.918

62500 unique terms (ms)

CorDeGen 116.149 117.187 117.401 117.867 118.224
CorDeGen+- 120.237 122.383 122.864 124.039 124.413
CorDeGen+EN 119.983 122.857 123.987 125.128 127.743
CorDeGen+(PF) 125.013 127.663 128.072 128.471 132.337
CorDeGen+(R) 124.161 124.924 126.113 127.246 128.994
CorDeGen+(D 123 124.084 124.593 127.219 128.401

312500 unique terms (s)

CorDeGen 1.159 1.176 1.179 1.187 1.202
CorDeGen+- 1.227 1.235 1.247 1.25 1.27
CorDeGen+EN 1.186 1.2 1.204 1.21 1.219
CorDeGen+(PF) 1.165 1.182 1.186 1.188 1.193
CorDeGen+(R) 1.216 1.244 1.247 1.258 1.285
CorDeGen+D 1.245 1.264 1.265 1.267 1.269

As can be seen in Fig. 4, as the size of the corpus increases, this ratio decreases rapidly for each language
variation until it is fixed at more or less the same level. For the largest tested corpus size, the ratio is in the range of
1.002 — 1.068, i.e. the use of language variations of the proposed CorDeGen+ method slows down the corpus
generation process by 0.2 — 6.8% compared to the basic method.

Experiments: generation results

To demonstrate the superiority of the proposed CorDeGen+ method over the basic CorDeGen method, a
similar clustering example given in [5] was used in the study.

In [5] it is shown that the result of clustering the corpus generated by the basic CorDeGen method using the
k-means method with the parameter k = 2 is two clusters of the same size (if the number of documents is even) or
almost the same size (if the number of documents is odd). At the same time, the numbers of the texts that fall into
these two clusters form continuous ranges. However, this statement is true only when there is no preprocessing of the
corpus to remove stop words.

The developed software implementations of the CorDeGen+EN language variation and the basic method
were used for experimental verification and Microsoft. ML library [14] was used for clustering, as in [5].

442 Herald of Khmelnytskyi national university, Issue 2, 2024 (333)

TexHiuHi HayKu ISSN 2307-5732

1.4

136 \
1.32 .R
1.28 \
1.24

N\
1.16
1.12 \
1.08 & :/\:
1.04 NG —
1 3
100 500 2500 12500 62500 312500
—9-0-9 EN —4—DE —h—FR —@—IT

Figure 4. The ratio of the mean execution time (arithmetic) of CorDeGen+ method variants to the basic method
Fig. 5 shows the result of corpus clustering with the size of 130321 unique terms, generated by the CorDeGen

and CorDeGen+®N methods with no previous corpus processing before clustering. As can be seen, both results are as
expected — the obtained clusters are of almost the same size (since there are 19 documents) and the document numbers

form continuous ranges.
)
1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Document number

b)

d

Cluster
number

2

o
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Document number

Figure 5. Results of corpus clustering without pre-processing, generated: a) by the basic CorDeGen method; b) by the CorDeGen+®V
method

Cluster
number

If, on the other hand, the corpora generated by both methods are clustered after first performing their pre-
processing — removing the stop words — then the obtained results will correspond to those shown in Fig. 6.

As can be seen in Fig. 6, the clustering results of the corpus generated by the basic CorDeGen method differ
from those expected. Although the numbers of texts included in both clusters form continuous ranges, the sizes of the
clusters differ significantly: 7 and 12 texts, respectively. This result is explained by the distortion of the distribution
of terms between the generated texts, which is caused by the removal of a part of the terms during pre-processing, as
was noted in the analysis of the basic method. However, the proposed CorDeGen+ method does not have this
disadvantage, so the expected result is obtained for it even in the case of performed preprocessing.

BicHuk XMeAbHUYbKO20 HAYioHa1bHO20 yHisepcumemy, Ne2, 2024 (333) 443

Technical sciences ISSN 2307-5732

a)
TT T I T I T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Document number

b)

Cluster
number
=

Cluster
number
=

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Document number

Figure 6. Results of corpus clustering with the removal of stop words, generated: a) by the basic CorDeGen method; b) by the
CorDeGen+*Y method

Conclusions

This study shows the feasibility of developing new and improving existing methods of generating corpora of
text data intended for use in solving software engineering tasks in the context of natural language processing
information systems. The performed analysis of the existing CorDeGen method revealed its certain disadvantages,
which can lead to problems when using the corpus in practice with the enabled pre-processing.

Based on the performed analysis, the CorDeGen+ method is proposed, which solves the identified
disadvantage of the basic CorDeGen method by introducing an additional stage of checking terms for admissibility
during the generation of the corpus. At the same time, the asymptotic computational complexity of the algorithm
implementing the proposed method remains unchanged compared to the basic method. This paper presents language
variations of the proposed method for the four most common European languages because the additional verification
stage is language-dependent.

Experimental verification (using the developed software implementation) confirmed the correctness of both
main assumptions of this study: about a slight slowdown in the process of generating corpora by the proposed method
and about the absence of distortion of the results of processing the generated corpus after removing stop words. As
the size of the corpus increases, the degree of relative slowing down of the generation process drops sharply and for
large corpora does not exceed 7%, while the clustering results of the corpus generated by the proposed method do not
change even after preprocessing.

Further research on the topic of this study can be carried out in the following theoretical and practical
directions:

e Fixing other drawbacks of the basic CorDeGen method.

e Consideration of other language variations of the proposed CorDeGen+ method, which were not

considered in this paper.

e Implementation of the proposed CorDeGen+ method for different software platforms in different

programming languages.
The created software reference implementation is published under the open MIT license and is available at the link:
https://github.com/yakivyusin/CorDeGenComplete/tree/2.1.0.

References

1. Al-Thwaib E., Hammo B. H., Yagi S., “An academic Arabic corpus for plagiarism detection: design,
construction and experimentation,” International Journal of Educational Technology in Higher Education Vol. 17 (1),
(2020). https://doi.org/10.1186/s41239-019-0174-x.

2. Lichtarge J., “Corpora generation for grammatical error correction,” in Proc. of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
(2019). https://doi.org/10.18653/v1/N19-1333.

3. Aichaoui S. B., Hiri N., Dahou A. H., “Automatic Building of a Large Arabic Spelling Error Corpus,” SN
Computer Science Vol. 4, article number 108, (2023). https://doi.org/10.1007/s42979-022-01499-x.

4. Tanaka K., Chu C., Kajiwara T., “Corpus Construction for Historical Newspapers: A Case Study on Public
Meeting Corpus Construction Using OCR Error Correction,” SN Computer Science Vol. 3, article number 489,
(2022). https://doi.org/10.1007/s42979-022-01393-6.

5. Yusyn Y., Zabolotnia T., “Text data corpora generation on the basis of the deterministic method”, KPI
Science News, no. 3, pp. 38-45, (2021). https://doi.org/10.20535/kpisn.2021.3.240780. [in Ukrainian]

6. Brigadir 1., Nothman J., “stopwords/en/terrier.txt,” (2016). [Online]. Available:
https://github.com/igorbrigadir/stopwords/blob/master/en/terrier.txt.

7. Gene D., “stopwords-iso/stopwords-de,” (2020). [Online]. Available: https://github.com/stopwords-

444 Herald of Khmelnytskyi national university, Issue 2, 2024 (333)

https://github.com/yakivyusin/CorDeGenComplete/tree/2.1.0
https://doi.org/10.1186/s41239-019-0174-x
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.1007/s42979-022-01499-x
https://doi.org/10.1007/s42979-022-01393-6
https://doi.org/10.20535/kpisn.2021.3.240780
https://github.com/igorbrigadir/stopwords/blob/master/en/terrier.txt
https://github.com/stopwords-iso/stopwords-de/blob/master/stopwords-de.txt

TexHiuHi HayKu ISSN 2307-5732

iso/stopwords-de/blob/master/stopwords-de.txt.

8. Gene D., “stopwords-iso/stopwords-fr,” (2020). [Online]. Available: https://github.com/stopwords-
iso/stopwords-fr/blob/master/stopwords-fr.txt.

9. Gene D., “stopwords-iso/stopwords-it,” (2020). [Online]. Available: https://github.com/stopwords-
iso/stopwords-it/blob/master/stopwords-it.txt.

10. .NET Foundation and contributors, “Home > xUnit.net,” (2019). [Online]. Available: https://xunit.net/.

11. Aichernig B., Schumi R., “Property-based Testing with FsCheck by Deriving Properties from Business
Rule Models,” in Proc. of 2016 IEEE Ninth International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW), 13th Workshop on Advances in Model Based Testing (A-MOST 2016), (2016).

12. NET Foundation and contributors, “Overview | BenchmarkDotNet,” (2018). [Online]. Available:
https://benchmarkdotnet.org/articles/overview.html.

13. Akinshin A., “Pro .NET Benchmarking: The Art of Performance Measurement”, Apress, (2019).

14. Microsoft, “ML.NET | Machine Learning made for .NET,” (2018). [Online]. Available:
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet.

BicHuk XmenbHUYybko20 HayioHa1bHo20 yHigepcumemy, No2, 2024 (333) 445

https://github.com/stopwords-iso/stopwords-de/blob/master/stopwords-de.txt
https://github.com/stopwords-iso/stopwords-fr/blob/master/stopwords-fr.txt
https://github.com/stopwords-iso/stopwords-fr/blob/master/stopwords-fr.txt
https://github.com/stopwords-iso/stopwords-it/blob/master/stopwords-it.txt
https://github.com/stopwords-iso/stopwords-it/blob/master/stopwords-it.txt
https://xunit.net/
https://benchmarkdotnet.org/articles/overview.html
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet

