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ALGORITHMIC AND SOFTWARE METHOD FOR PREDICTING DATA WITH 

MULTIMODAL DISTRIBUTION BASED ON THE MDN MODEL 
 

The development of machine learning models capable of accurately predicting data with multimodal distributions is a 

critical direction in modern data analysis. Such data commonly arise in practical applications where a single input can correspond 

to multiple valid outputs, for example, in robotic control systems, image processing, or pattern recognition. Traditional neural 

network models, which rely on deterministic prediction strategies, are often limited in their ability to capture this variability and 

uncertainty. To address this limitation, this paper presents a modified algorithmic and software method based on the Mixture 

Density Network (MDN), incorporating a probabilistic method into the loss function calculation during training. Applying a 

numerical integral into the proposed probabilistic method, making the model more stable and interpretable during training. The 

study includes a comparative analysis of the classical MDN and the proposed method using synthetic datasets with clearly defined 

multimodal characteristics, as well as a real-world simulation of a robotic arm positioning task, where multiple angle 

configurations can achieve the same target coordinates. Additional complexity is introduced by modeling the simultaneous 

operation of two robotic arms, further emphasizing the model’s capacity to resolve multiple overlapping outcomes. The 

experimental results demonstrate that the modified MDN achieves a consistent reduction in prediction error and training loss 

across all test scenarios, outperforming both the original MDN and a conventional least-squares method. Despite an increase in 

training time, the computational efficiency of the final model remains unaffected. These findings highlight the practical relevance 

and scalability of the proposed method for improving prediction accuracy in complex multimodal systems, offering valuable 

potential for broader applications in intelligent automation and decision-making systems. 
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ШКУРАТ ОКСАНА 

ФЕДОРЧУК ІВАН 
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» 

 

АЛГОРИТМІЧНО-ПРОГРАМНИЙ МЕТОД ДЛЯ ПРОГНОЗУВАННЯ ДАНИХ З 

МУЛЬТИМОДАЛЬНИМ РОЗПОДІЛОМ НА ОСНОВІ МОДЕЛІ MDN 

 
У даній роботі розглянуто задачу розроблення методу прогнозування мультимодальних даних на основі технології машинного 

навчання для покращення точності прогнозу. Проведений аналіз існуючих методів прогнозування мультимодальних даних, зокрема 
методу машинного навчання на основі моделі MDN та методу найменших квадратів. Запропоновано програмний метод прогнозування 

мультимодальних даних на основі імовірнісної моделі машинного навчання архітектури MDN, що демонструє збільшення точності 

прогнозу. 
Ключові слова: дані з мультимодальним розподілом, розподіл Ґауса, модель MDN, функція втрат. 
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Introduction 

Likelihood models play a pivotal role in contemporary machine learning, especially in probabilistic modeling 

and statistical inference. These models provide a rigorous mathematical framework for extracting meaningful insights 

from data, particularly under conditions of uncertainty or incomplete information. They are particularly advantageous 

in scenarios where a single input may logically correspond to multiple correct outputs – situations common in many 

practical applications, such as image processing, pattern recognition, and decision-making tasks. 

One illustrative example is semantic image segmentation, where the primary objective is to assign each pixel 

of an image to a specific predefined class. This process becomes particularly challenging near boundary regions, where 

pixels often represent transitional or overlapping areas between distinct classes, leading to significant classification 

ambiguity. Such uncertainty is heightened when pixels might plausibly belong to multiple categories simultaneously 

[1] due to overlapping object characteristics or the inherent complexity of the scene. Data exhibiting this kind of 

uncertainty typically display a multimodal distribution, making it difficult to achieve accurate classification with 

conventional deterministic models. 

To handle such multimodal data, likelihood-based approaches [2] have been successfully employed, since 

they offer predictions in terms of probabilities, assigning likelihoods to various possible outcomes rather than limiting 

the prediction to a single deterministic result. Specifically, the Mixture Density Network (MDN) has emerged as one 

of the most effective likelihood-based neural network frameworks [3]. MDN utilizes a mixture of Gaussian 
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distributions to estimate the likelihoods of multiple potential outcomes, providing flexibility to represent complex, 

multimodal output spaces effectively. The number of Gaussian components – an important hyperparameter – 

determines the flexibility and capacity of MDNs to model diverse data distributions accurately. 

Despite the success of MDNs in representing multimodal data, its standard implementation relies 

predominantly on likelihood-based predictions, which may limit performance in certain complex scenarios, especially 

when dealing with distinctly bimodal or sharply multimodal data distributions. To address this limitation, this paper 

investigates a modification of the MDN framework by integrating probabilistic modeling techniques to enhance the 

learning capability and accuracy of MDNs, specifically tailored for accurately describing data with bimodal and 

multimodal distribution. The proposed probabilistic extension is designed to enable better differentiation among 

multiple valid outputs, thereby improving the precision and robustness of predictions in challenging multimodal 

classification tasks. 

Analysis of related research 

Modeling multimodal data – where a single input may correspond to multiple valid outputs – presents 

significant challenges in machine learning. Traditional deterministic models often fall short in capturing the inherent 

uncertainty and variability of such data. To address this, researchers have explored various probabilistic modeling 

approaches that can effectively represent and predict multimodal distributions. 

The classical MDN, introduced by Bishop [3], combines neural networks with a mixture of Gaussian 

distributions to model conditional probability densities. While effective in capturing multimodal outputs, MDNs rely 

on the negative log-likelihood (NLL) as a loss function, which can lead to numerical instability, especially when the 

predicted probabilities are extremely low or high. This instability can hinder the training process and affect the model's 

predictive performance. Recent research has proposed alternative loss functions to better handle multimodal 

regression tasks [4]. For instance, the use of multi-bin loss functions has been suggested to address the limitations of 

L2 loss, which assumes a unimodal Gaussian distribution and often leads to blurred predictions in multimodal 

scenarios. By discretizing the output space into multiple bins and assigning probabilities to each, models can better 

capture the diversity of possible outcomes. 

Variational methods, such as Variational Autoencoders (VAEs), have been employed to model complex 

multimodal distributions [5]. VAEs introduce a probabilistic latent space, allowing the model to capture the underlying 

data distribution more effectively. This approach has been particularly useful in scenarios where the data exhibits high 

variability and uncertainty. 

Incorporating domain knowledge into probabilistic models has led to the development of Physics-guided 

Mixture Density Networks (PgMDNs) [6]. These models integrate physical laws and constraints into the MDN 

framework, enhancing the model's ability to predict outcomes that are consistent with known physical behaviors. This 

approach has shown promise in fields such as engineering and environmental modeling. 

Probabilistic models have also been applied to human-robot interaction tasks [7], where understanding and 

predicting human behavior is crucial. By learning from demonstrations, models can capture the multimodal nature of 

human actions and improve the robot's ability to interact naturally and effectively with humans. 

In autonomous driving and robotics, predicting the trajectory of agents is a multimodal problem due to the 

multitude of possible future paths. Recent studies have introduced novel loss functions, such as Offroad Loss and 

Direction Consistency Error, to improve the diversity and accuracy of predicted trajectories [8]. These enhancements 

enable models to better capture the range of plausible future movements. 

Beyond MDNs, multimodal deep learning approaches have been developed to process and integrate 

information from multiple modalities, such as text, images, and audio. These models leverage the complementary 

nature of different data types to improve prediction accuracy and robustness. For example, in protein function 

prediction, integrating sequence and structural information through multimodal models has led to significant 

performance gains [9]. 

Study objectives formulation 

This study aims to describe a developed algorithm for training a modified Mixture Density Network (MDN) 

model, which employs a probabilistic approach to calculate the loss function, replacing the likelihood-based method 

used in the classical MDN. Furthermore, the study seeks to analyze and evaluate the effectiveness of this approach in 

comparison to other neural network models across various datasets exhibiting multimodal distributions. 

Main part of study 

First, the general structure of the Mixture Density Network (MDN) and the basic principles of its operation 

are examined. An MDN integrates a neural network with a Mixture of Gaussians (MoG), a probabilistic model that 

represents a distribution as a weighted sum of multiple Gaussian (normal) components. 

A Mixture of Gaussians (MoG) is a probabilistic model that represents a distribution as a weighted sum of 

multiple Gaussian (normal) distributions. Mathematically, the probability density function of a MoG is (1): 

𝑝(𝑦) =∑𝜋𝑘𝒩(𝑦|𝜇𝑘, 𝜎𝑘)

𝐾

𝑘=1

 (1) 

In this formula 𝜋𝑘 is a weight for the k-th Gaussian so that (2): 

∑𝜋𝑘 = 1

𝐾

𝑘=1

 (2) 
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𝐾 is the number of Gaussian components in the mixture. 𝒩(𝑦|𝜇𝑘, 𝜎𝑘) represents the k-th Gaussian 

distribution with mean 𝜇𝑘 and covariance 𝜎𝑘, which can be described by probability density function of Gaussian 

model (3): 

𝒩(𝑦|𝜇𝑘, 𝜎𝑘) =
1

√2𝜋𝜎𝑘
2
𝑒
−
(𝑦−𝜇𝑘)

2

2𝜎𝑘
2

 (3) 

For the continuous variable 𝑦 its overall cumulative probability over MoG equals 1. 

An MDN, as a neural network, typically consists of an input layer, one or more hidden layers, and an output 

layer. The input layer receives the data, which is then processed through fully connected hidden layers utilizing non-

linear activation functions such as ReLU, sigmoid, or tanh. The key distinction between an MDN and conventional 

shallow or deep neural networks lies in its output layer. Instead of predicting a single deterministic output, the MDN 

outputs the parameters of a MoG: specifically, the means, covariances, and mixing coefficients for each Gaussian 

component in the mixture. This enables the MDN to predict a full probability distribution over potential outcomes, 

effectively capturing uncertainty and offering a range of predictions, each with an associated probability. The number 

of Gaussian components is treated as a hyperparameter in the model. 

Training an MDN involves minimizing a loss function by adjusting the model parameters. Traditionally, the 

loss function is based on the negative log-likelihood (NLL), which is standard for models that predict probability 

distributions. For MDN loss function can be expressed by formula (4): 

𝐿[𝜙] =∑− log(∑𝜋𝑘(𝑥𝑖 , 𝜙)𝒩(𝑦𝑖|𝑚𝑘(𝑥𝑖 , 𝜙), 𝜎𝑘(𝑥𝑖 , 𝜙))

𝐾

𝑘=1

)

𝐼

𝑖=1

 (4) 

However, this paper explores the use of a probabilistic approach as an alternative to the likelihood-based 

method. One motivation for this shift is that the computed likelihood of a specific value 𝑦 can exceed 1, potentially 

resulting in a negative loss value. This can compromise the effectiveness of model training and make the results harder 

to interpret. Ideally, a loss function should converge to 0 when the model perfectly fits the data, serving as a clear 

indicator for the end of training. This property is not guaranteed when using likelihood-based loss. 

It is important to note that the Gaussian model represents probability distributions for continuous variables, 

implying that we can only compute the probability of a value falling within a specific interval, rather than having an 

exact value. For MoG to calculate the probability of value 𝑦 to be in interval [𝑦1, 𝑦2] following expression (5) is used: 

𝑝(𝑦1, 𝑦2) = ∫ ∑𝜋𝑘𝒩(𝑦|𝜇𝑘, 𝜎𝑘)

𝐾

𝑘=1

𝑦2

𝑦1

𝑑𝑦 (5) 

Therefore, as a modification of the method, we propose using the following loss function (6) instead of the 

original (4): 

𝐿[𝜙] = ∑− log( ∫ ∑𝜋𝑘(𝑥𝑖 , 𝜙)𝒩(𝑦|𝑚𝑘(𝑥𝑖 , 𝜙), 𝜎𝑘(𝑥𝑖 , 𝜙))

𝐾

𝑘=1

𝑑𝑦

𝑦𝑖+𝜀

𝑦𝑖−𝜀

)

𝐼

𝑖=1

 (6) 

A notable consequence of adopting the probabilistic approach is an increase in model training time, due to 

the additional computational effort required. However, the runtime performance of the trained model remains 

unaffected, since the modification only impacts the loss function used during training. For the numerical 

approximation of the definite integral involved in the loss calculation, the trapezoidal rule is employed. 

As the first task to evaluate the accuracy of the model developed using the proposed method in comparison 

with the classical approach, a synthetic prediction problem was selected. This problem involved forecasting values 

from an artificial dataset designed to meet the following criteria: 

• The input consists of a single numerical value. 

• For each input in the training set, there are two distinct correct output values. 

Given these conditions, a training dataset was generated using the following algorithm: 

1,000 input values were uniformly sampled from the interval [−15,15]. For each generated input value 𝑥, two 

corresponding output values were calculated using formulas (7,8): 

𝑦1 = sin(𝜙0 + 𝜙1 ∙ 𝑥) ∙ 𝑒
−
(𝜙0+𝜙1∙𝑥)

2

32 + 0.01 ∙ 𝜀1, 
(7) 

𝑦2 = log(𝑥 + 15) + 0.01 ∙ 𝜀2 (8) 

In this experiment, the parameters 𝜙0 and 𝜙1 were set to 3 and 0.9, respectively. The noise terms 𝜀1 and 𝜀2 

were randomly sampled from a normal distribution to introduce variability into the data. As a result, the dataset was 

obtained, visualization of which can be observed on Figure 1. 

In this experiment, the classical MDN model was compared with the previously proposed modified version. 

The number of Gaussian components in the mixture was set to 2. Both neural network models share the same 

architecture: a shallow neural network with a single hidden layer consisting of 20 hidden units. The tanh function was 

selected as the activation function. The full-batch Adam optimizer was used as the model fitting strategy. 

For the modified model, the hyperparameter 𝜀 was set to 0.05, and the step size for computing the definite 

integral was set to 0.0025. Both models were initialized such that their trainable parameters had identical values before 

training. Therefore, both models had the same initial accuracy. 
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Fig. 1. Generated data visualization 

 

The generated dataset was split into training (80% of the original data) and test (20%) sets. Both models were 

trained for 1500 epochs. The results of the experiment are presented in Table 1. 

 

Table 1 

Comparison of models learning effectiveness on mandatory generated data with multimodal distribution 

 Final training 

loss 

Final testing loss Accumulative 

training loss (from 

epoch 500) 

Accumulative testing 

loss (from epoch 500) 

Original MDN 

model 
1.208 1.173 1337.074 1318.767 

Modified MDN 

model 
1.152 1.120 1304.965 1291.521 

Modified MDN 

model accuracy 

gain (%) 

4.559 4.561 2.401 2.066 

The comparison of learning dynamic for both models can be observed on Figure 2. 

 
Fig. 2. Learning dynamic comparison for original and modified MDN models in terms of improving a loss values for training and test 

data 

 

Next, we will compare the prediction accuracy of the models in more practical scenarios. As an example of 

applying a predictive model to data with a multimodal distribution, we consider a problem related to the kinematics 

of a robotic arm. 

Let us describe this problem in more detail. Imagine a robotic arm consisting of two segments connected 

together and operating within a single plane. One end of the first segment is fixed in space, while the other end is 

connected to one end of the second segment. Both segments can rotate within certain limits. The task is to predict the 

angles of rotation for each segment, given the coordinates of a target point, so that the free end of the arm reaches as 

close as possible to that point. 

From a mathematical perspective, the coordinates 𝑥1 and 𝑥2 of the free end of the robotic arm, with segment 

lengths 𝐿1 and 𝐿2, and rotation angles 𝜃1 and 𝜃2, are given by the following formulas (9, 10): 
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𝑥1 = 𝐿1 cos(𝜃1) − 𝐿2 cos(𝜃1 + 𝜃2), (9) 

𝑥2 = 𝐿1 sin(𝜃1) − 𝐿2 sin(𝜃1 + 𝜃2) (10) 

A visual representation of this setup can be seen in Figure 3. 

 
Fig. 3. A schematic representation of a 2-dimensional robotic arm consisting of two segments with lengths 𝑳𝟏 and 𝑳𝟐. When rotated by 

angles 𝜽𝟏 and 𝜽𝟐, respectively, according to the aforementioned formulas, the free end reaches a point with coordinates (𝒙𝟏, 𝒙𝟐). 

 

This problem involves predicting data with a multimodal distribution, as for certain coordinates, there may 

exist two different sets of angles that position the robotic arm’s end at the same target point. In this study, an 

experiment was conducted to compare the prediction accuracy for this task using the original and the modified MDN 

models, as well as a neural network model trained using the least squares method. As the accuracy metric for model 

prediction, distance error was chosen. This metric measures the average distance between the coordinates reached by 

the tip of the robotic arm, using the predicted angles, and the expected coordinates. 

For the purpose of this experiment, a dataset consisting of 1,000 input-output pairs was generated. The 

following parameters were defined for the simulated robotic arm: 

• 𝐿1  =  0.815 

• 𝐿2  =  0.475 

• Minimum rotation angle 𝜃1 =
𝜋

8
 

• Maximum rotation angle 𝜃1 =
5𝜋

8
 

• Minimum rotation angle 𝜃2 =
𝜋

2
 

• Maximum rotation angle 𝜃2 =
3𝜋

2
 

As a result, a dataset was obtained, the visualization of which can be seen in Figure 4. 

 
Fig. 4. Visualization of generated coordinates of target points to be reached by the tip of the robotic arm 

 

The following architectural settings were selected for the models tested in this task: 

• The MDN-based models use 2 Gaussian components. 

• All models consist of an input layer with 2 inputs and a hidden layer with 20 hidden units. 
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• The MDN-based models have an output layer with 12 outputs. 

• The model trained using the least squares method has an output layer with 2 outputs. 

• Activation function: Tanh. 

• Training strategy: full-batch Adam optimizer. 

For the modified model, the hyperparameter 𝜀 was set to 0.2, and the step size for calculating the definite 

integral was set to 0.01. The generated dataset was split into a training set (80% of the original data) and a test set 

(20%). All models were trained for 1000 epochs. The results of the experiment are presented in Table 2.  

 

Table 2 

Comparison of models predicting accuracy for 2-dimensional robotic arm movement 

 Distance error Accumulative distance error 

(from epoch 200) 

Least square model 0.154 182.645 

Original MDN model 0.121 115.610 

Modified MDN model 0.107 107.909 

Modified MDN model gain 

compared to least square 

(%) 

30.584 40.919 

Modified MDN model gain 

compared to original 

MDN (%) 

11.573 6.661 

The comparison of dynamic of distance error values for all models during learning epochs can be observed 

on Figure 5. 

 

 
Fig. 5. Distance error values dynamic for all models 

 

Finally, it was decided to complicate the last task and modify it as follows: 

• The prediction is performed for two robotic arms simultaneously. 

• The reference point of the second arm is shifted along the 𝑋₂ axis by a known value called offset. 

• The angles applied to the second arm rotate it in the opposite direction relative to the first one. 

• Both arms have identical length parameters and joint angle constraints. 

Accordingly, we obtain the following formulas (11, 12) for the coordinates 𝑥3 and 𝑥4 of the end-effector of 

the second arm when its segments of lengths 𝐿1 and 𝐿2 are rotated by angles 𝜃3 and 𝜃4: 

𝑥3 = 𝐿1 ∙ cos(−𝜃3) − 𝐿2 ∙ cos (−𝜃3 − 𝜃4), (11) 

𝑥4 = 𝐿1 ∙ sin(−𝜃3) − 𝐿2 ∙ sin(−𝜃3 − 𝜃4) − 𝑜𝑓𝑓𝑠𝑒𝑡 (12) 

The parameters were set to be the same as in the previous task. For the second arm, the offset parameter was 

set to 1. Based on this, a dataset containing 1000 input-output data instances was generated, with its visualization 

shown in Figure 6. 
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Fig. 6. Visualization of generated coordinates of target points to be reached by the tips of two robotic arms 

 

To solve the prediction task, the same models as in the previous task were selected, with modifications to 

their input and output layers to match the requirements of the new task. The generated dataset was split into a training 

set (80% of the total) and a test set (20% of the total). All models were trained for 1000 epochs. The results of the 

experiment are presented in Table 3. 

 

Table 3 

Comparison of models predicting accuracy for two 2-dimensional robotic arms movement 

 Distance error Accumulative distance error 

(from epoch 200) 

Least square model 1.113 944.796 

Original MDN model 1.046 847.868 

Modified MDN model 1.020 835.355 

Modified MDN model gain 

compared to least square (%) 
8.392 11.584 

Modified MDN model gain 

compared to original MDN (%) 
2.467 1.476 

 

The comparison of the distance error dynamics for each model during training can be observed in Figure 7. 

 

 
Fig. 7. Distance error values dynamic for all models 

 

Conclusions 

This work presented the development and evaluation of an algorithmic and software method for constructing 

neural network models aimed at predicting data characterized by multimodal distributions. A thorough analysis of 

existing MDN-based approaches was carried out, followed by the proposal of a modified Mixture Density Network 
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(MDN) framework. This modification introduces a probabilistic approach into the loss function calculation by 

employing a numerical approximation of the definite integral, thereby replacing the conventional negative log-

likelihood method used in standard MDNs. 

The proposed approach was validated through a series of experiments on both synthetic and real-world-

inspired datasets. Specifically, predictive tasks involving data with dual-mode output distributions and robotic arm 

positioning scenarios demonstrated that the modified MDN consistently achieved better learning dynamics and lower 

prediction errors compared to the classical MDN and traditional least squares models. This performance improvement 

was evident not only in isolated predictions but also in more complex systems simulating the simultaneous operation 

of two robotic arms. 

Despite these advantages, the enhanced model incurs a significant increase in training time due to the 

additional computational overhead introduced by the numerical integration step. However, the runtime performance 

during inference remains unaffected, affirming the practical applicability of the method in real-time systems. 

Future research will focus on optimizing the computational cost associated with the modified loss function. 

Promising directions include exploring alternative analytical or approximate methods for computing the definite 

integral in the Gaussian mixture context, and investigating surrogate loss functions that retain the model’s 

interpretability and stability while reducing training time. Such advancements could further improve the scalability of 

this approach in complex multimodal systems, enhancing its value for applications in robotics, image analysis, and 

beyond. 
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