
 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 285

https://doi.org/10.31891/2307-5732-2025-349- 42

УДК 004.5:004.8:004.9
НІКІТІН ДМИТРО

Харківський національний університет радіоелектроніки (ХНУРЕ)

https://orcid.org/0000-0003-4388-4996
e-mail: nikitin27959@gmail.com

ГОЛЯН ВІРА
Харківський національний університет радіоелектроніки (ХНУРЕ)

https://orcid.org/0000-0002-7196-5286
e-mail: vira.golan@nure.ua

МЕТОДИ ІНТЕГРАЦІЇ ШТУЧНОГО ІНТЕЛЕКТУ ТА ІНЖЕНЕРІЇ ЗНАНЬ В

АВТОМАТНІ ПРОГРАМНІ СИСТЕМИ РЕАЛЬНОГО ЧАСУ

Неперервний розвиток програмних систем вимагає інтеграції штучного інтелекту (ШІ) та інженерії

знань задля підвищення рівня автоматизації, адаптивності та прийняття рішень у режимі реального часу.

Традиційні програмні рішення часто не здатні задовольнити зростаючі вимоги до динамічних, автономних і

інтелектуальних функціональностей, особливо в тих застосуваннях, де критично важливими є швидкість відгуку

та контекстна обізнаність. Ця стаття присвячена розробці автоматизованих програмних систем з

використанням ШІ, зосереджуючись на їх впровадженні в середовища, що вимагають високого рівня взаємодії та

адаптивності. Запропонований підхід використовує хмарні сервіси ШІ, зокрема Azure OpenAI, для підвищення

швидкодії системи через інтеграцію передових методів обробки природної мови (NLP), управління діалогами та

алгоритмів прийняття рішень. Завдяки використанню моделей ШІ, таких як генеративні попередньо натреновані

трансформери (GPT), система здатна розуміти складні запити користувачів, підтримувати контекстну

зв’язність у розмовах і автономно виконувати завдання з мінімальним втручанням людини. Ключовим аспектом

цього дослідження є архітектурна схема, розроблена для забезпечення безперебійної взаємодії між компонентами

ШІ та зовнішніми системами, що гарантує обробку даних у режимі реального часу та оптимізацію процесу

прийняття рішень. Одним із основних внесків цього дослідження є демонстрація того, як автоматизація на основі

ШІ може значно підвищити ефективність та надійність програмних застосувань у режимі реального часу.

Дослідження варіантів використання та приклади ілюструють практичне впровадження цих технологій для

покращення користувацького досвіду та оперативної ефективності. Оцінювальні показники охоплюють

індикатори продуктивності для функціональностей на базі ШІ, що забезпечують масштабованість та надійність

у динамічних середовищах. Стаття також розглядає перспективи подальшого розвитку та можливі виклики в

галузі, акцентуючи увагу на необхідності подальшої адаптації та вдосконалення ШІ-орієнтованих програмних

систем відповідно до сучасних технологічних тенденцій та потреб користувачів.

Ключові слова: штучний інтелект, автоматні системи, програми в режимі реального часу, чат-боти на

основі ШІ, Azure OpenAI, інженерія знань.

NIKITIN DMYTRO

GOLIAN VIRA
Kharkiv National University of Radio Electronics (NURE)

METHODS FOR INTEGRATING ARTIFICIAL INTELLIGENCE AND KNOWLEDGE

ENGINEERING INTO AUTOMATON-BASED REAL-TIME SOFTWARE SYSTEMS

The continuous evolution of software systems necessitates the integration of Artificial Intelligence (AI) and knowledge

engineering to enhance automation, adaptability, and real-time decision-making. Traditional software solutions often struggle to meet the

increasing demands for dynamic, autonomous, and intelligent functionalities, particularly in real-time applications where responsiveness
and contextual awareness are critical. This paper explores the development of AI-enhanced automated software systems, focusing on their

implementation in environments that require high levels of interaction and adaptability. The proposed approach leverages cloud-based AI

services, particularly Azure OpenAI, to enhance system responsiveness through the integration of advanced natural language processing
(NLP), dialogue management, and decision-making algorithms. By utilizing AI models such as generative pre-trained transformers (GPT),

the system is capable of understanding complex user queries, maintaining contextual coherence in conversations, and autonomously

executing tasks with minimal human intervention. A key aspect of this research is the architectural framework designed to facilitate seamless
interaction between AI components and external systems, ensuring real-time data processing and decision optimization. One of the core

contributions of this study is demonstrating how AI-driven automation can significantly enhance the efficiency and reliability of real-time

software applications. Case studies and examples illustrate the practical implementation of these technologies in enhancing user experience
and operational efficiency. Evaluation metrics encompass performance indicators for AI-driven functionalities, ensuring scalability and

reliability in dynamic environments. The paper also discusses future development prospects and potential challenges in the field, emphasizing

the need for continuous adaptation and improvement of AI-driven software systems in line with modern technological trends and user
requirements.

Keywords: artificial intelligence, automaton-based systems, real-time applications, AI-powered chatbots, Azure OpenAI,

knowledge engineering.

Problem statement

In recent years, the integration of artificial intelligence (AI) into software systems has revolutionized

the capabilities of applications, particularly in dynamic real-time environments [1]. Traditional software systems

often struggle to adapt quickly to changing user needs and real-time data streams. However, advancements in AI

and knowledge engineering offer promising solutions to enhance the responsiveness and intelligence [2] of

software applications.

https://orcid.org/0000-0003-4388-4996
mailto:nikitin27959@gmail.com
https://orcid.org/0000-0002-7196-5286
mailto:vira.golan@nure.ua

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 286

The motivation behind this research stems from the growing demand for software systems that can

dynamically interact with users, provide real-time communication features, and perform complex tasks

autonomously. Current systems often lack the ability to understand natural language, engage in meaningful

dialogue, and make contextually appropriate decisions without human intervention. AI technologies, including

natural language processing (NLP) [3], dialogue systems, and decision-making algorithms, provide a pathway

to address these limitations effectively.

By leveraging AI models integrated into software systems, it becomes feasible to create interactive

applications where users can engage in conversations with AI assistants that mimic human-like interactions.

Such capabilities not only enhance user experience but also enable applications to handle diverse tasks

efficiently, ranging from customer support to real-time data analysis and decision support.

Literature and publications survey

Modern trends in software system development highlight the growing role of artificial intelligence (AI)

and knowledge engineering in creating automated solutions for dynamic real-time applications. Numerous

studies explore the use of AI to enhance the efficiency of software systems, particularly through the integration

of natural language processing (NLP) models, dialogue systems, and decision-making algorithms.

In studies "Real-time applications using artificial intelligence" [1] and "Language Models are Few-Shot

Learners" [4], researchers examine the application of neural networks and deep learning to automate data

processing and real-time user interactions. The authors emphasize the importance of using generative pre-trained

transformers (GPT) to improve contextual analysis and intent recognition in dialogue systems.

Research "Real-Time Communication in AI-Driven Software Systems" [13] on cloud-based AI

applications demonstrates significant progress in computational capabilities and scalability. Study "Designing

AI-Powered Chat Applications with Azure Cognitive Services" [14] explores the integration of Azure OpenAI

Services for implementing distributed software systems, ensuring stable real-time processing of large data

volumes.

Key aspects of effective dialogue system management and real-time support are discussed in "Deep

Learning for Chatbots" [8] and "Deep Learning Approaches for Real-Time Chatbot Development Using Azure

Cognitive Services" [24]. The authors highlight that advanced dialogue management models and intent

recognition techniques enable the creation of intuitive AI-human interaction systems, which are particularly

relevant for automated customer service.

Additionally, optimizing software systems using big data analysis and machine learning methods is a

prominent research focus of "Real-Time Data Integration Framework for AI-Driven Chat Applications" [25]

work. These studies emphasize the necessity of integrating adaptive learning algorithms to improve decision-

making accuracy and enable self-tuning software systems that adjust to dynamic environmental changes.

Thus, the analysis of contemporary publications confirms the relevance of integrating AI and knowledge

engineering into automated software systems. Further research focuses on improving the adaptability, scalability,

and interactivity of such solutions, aligning with the objectives set in this study.

Objectives

The aim of this research is to design and develop an AI-enhanced software system capable of supporting

dynamic real-time applications through advanced AI and knowledge engineering techniques [4]. The primary

goal is to overcome the limitations of traditional software systems by integrating AI models that can interact with

users in natural language, understand context, and execute tasks autonomously in real-time scenarios.

The core objectives include:

1. Designing an architectural framework: developing a robust framework that integrates AI components

such as natural language processing, dialogue management, and decision-making algorithms seamlessly into the

software system;

2. Enhancing user interaction: creating an intuitive UX where users can engage in natural conversations

with AI assistants, allowing for real-time communication and task execution [5] without the need for human

intervention;

3. Improving system responsiveness: enabling the software system to dynamically adapt to changing

user needs and environmental conditions, ensuring timely and accurate responses;

4. Demonstrating practical applications: providing proof-of-concept through a case study or

experiments that illustrate the effectiveness and practicality of the proposed AI-enhanced software system in

real-world scenarios.

5. By achieving these objectives, this research aims to contribute to the advancement of AI-driven

software systems tailored for dynamic real-time applications, ultimately enhancing efficiency, usability, and

adaptability in various domains such as customer service, healthcare, finance, and beyond.

Presentation of the main material

The methodology of this research involves designing and implementing an AI-enhanced software

system enhanced by dynamic real-time capabilities. The system aims to leverage advanced AI techniques and

knowledge engineering principles to improve its responsiveness, intelligence, and usability in real-world

scenarios.

The foundation of the proposed system lies in its architectural framework, designed to accommodate

various AI components seamlessly. This framework integrates modules for natural language processing (NLP),

 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 287

dialogue management, decision-making algorithms, and real-time data processing. Each module plays a crucial

role in enabling the system to understand user inputs, generate contextually relevant responses, and execute tasks

autonomously. The core components of the system:

• Azure OpenAI Services: includes modules for natural language processing (NLP), dialogue

management, and decision-making [6];

• Data Processing and Integration Layer: manages real-time data streams and integrates with external

APIs;

• User Interface: provides an intuitive interface for users to interact with the AI-powered functionalities.

The relationship diagram for the listed components is shown in Figure 1.

Figure 1: Architectural framework core components

The following elements are present in the diagram:

• User Interface: provides an interface for users to interact with the system;

• Dialogue Management: manages interactive dialogues with users;

• Decision Making: uses AI models to make context-aware decisions;

• Data Processing: handles real-time data processing and integration;

• Azure OpenAI Services: includes NLP, dialogue management, and decision-making services.

Central to the system's functionality is the integration of AI models that enable natural language

understanding (NLU) and generation (NLG), sentiment analysis, intent recognition, and context-aware decision-

making. Azure OpenAI services [7] provide pre-trained models hosted on Azure and accessed via APIs, ensuring

scalability and reliability in handling diverse user interactions and data inputs.

The system facilitates real-time communication [8] capabilities through interactive dialogue systems.

Users can engage in natural conversations with AI agents, which can comprehend complex queries, retrieve

relevant information from databases or external sources, and provide instantaneous responses or actions.

Considerations for scalability and integration with existing software infrastructure are paramount. The

system is designed to be modular and scalable, allowing for easy integration with different application

environments and the ability to handle increasing volumes of data and user interactions over time.

The integration of AI models for real-time communication forms a pivotal component within the

architecture of the AI-enhanced software system [9]. Leveraging the Azure OpenAI SDK, we aim to empower

the application with advanced capabilities in natural language processing (NLP), dialogue management, and

decision-making, thereby enhancing user interaction and system responsiveness.

First, we initialize the Azure OpenAI SDK clients to access various services provided by Azure,

including text generation, sentiment analysis, and conversational AI capabilities. The system utilizes Azure's

NLU capabilities to interpret user inputs and extract relevant information [10]. This involves preprocessing user

queries to understand intents and entities, enabling the system to respond contextually.

Azure OpenAI's dialogue management module [11] allows the system to maintain context across

conversations, ensuring coherent interactions over multiple exchanges with users. This facilitates a more natural

user experience.

Integrating decision-making algorithms based on Azure OpenAI's capabilities enables the system to

make informed decisions autonomously. This includes selecting appropriate responses or actions based on the

analyzed context and user intent.

Through the integration of these AI models, the software system supports real-time communication

where users can interact fluidly with AI agents. The agents can understand natural language queries [12],

maintain conversational context, and execute tasks autonomously, providing immediate and relevant responses.

Class diagram of the described implementation is presented in Figure 2.

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 288

Figure 2: Class Diagram of Azure OpenAI client interaction and dialogue management

One of the primary uses of NLP in real-time communication is to facilitate interaction between users

and AI models. For instance, in a chatbot application [13], NLP techniques are used to parse the user's input,

understand the context and the intent, and generate an appropriate response. This involves several sub-tasks like

tokenization [14], part-of-speech tagging, named entity recognition, and dependency parsing.

Another important aspect is understanding the sentiment or emotion behind the user's input. This can

be achieved using sentiment analysis [15], which is a common application of NLP. By understanding the

sentiment of the user's input, the AI model can generate responses that are more empathetic and contextually

appropriate.

After the user’s input has been received, the application must build the prompt and ask AI to provide

the response with either a user-friendly message or a function call (i.e. guiding an application on transforming

the fetched parameters and data properties into an executable action).

NLP also plays a crucial role in real-time translation services. By using techniques such as machine

translation and sequence-to-sequence models, AI models can provide instant translation between different

languages, enabling seamless communication between users who speak different languages.

Moreover, NLP techniques can also be used for speech recognition and synthesis in voice assistants

[16]. Techniques like automatic speech recognition (ASR) convert spoken language into written text, and text-

to-speech (TTS) techniques convert written text into spoken language. These techniques enable voice assistants

to understand user commands and respond verbally, providing a more natural and intuitive user experience.

To enable real-time communication via AI assistants between humans and machines, the proposed

framework relies on the use of AI models that can understand and respond to natural language inputs. One of the

key approaches used in the framework is the dialogue system, which is designed to simulate human-like

conversations with users.

Dialogue systems powered by intelligent assistants are complex AI models that use natural language

processing (NLP) and machine learning (ML) algorithms [17] to understand and respond to user inputs. They

are capable of generating responses that are tailored to the user's specific needs and preferences and can even

adapt to changes in the user's behavior and preferences over time.

Another important AI model used in the framework is the conversational agent, which is designed to

engage users in natural-sounding conversations. Conversational agents use a combination of NLP and ML

algorithms to understand and respond to user inputs and can even use humor and personality to make interactions

more engaging.

The dialogue system and conversational agent AI models are used in conjunction with each other to

create a seamless and intuitive communication experience for users. The dialogue system is responsible for

understanding and processing user inputs, while the conversational agent is responsible for generating responses

that are tailored to the user's specific needs and preferences.

Together, these AI models enable the development of real-time communication systems that can

understand and respond to user inputs in a natural and intuitive way. This allows users to interact with machines

 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 289

in a way that is similar to interacting with other humans and enables the development of a wide range of

applications that can benefit from real-time communication, such as customer service chatbots, virtual assistants,

and more.

The developed framework incorporates a decision making and task execution component, which enables

the AI system to make informed decisions and take actions based on the user's inputs, the system's knowledge

and capabilities, and the context in which the interaction is taking place.

The decision-making component employs a combination of machine learning algorithms and

knowledge representation techniques to analyze the user's inputs and determine the most effective course of

action. This component is responsible for evaluating the user's goals, preferences, and constraints, as well as the

system's capabilities, limitations, and potential biases, to determine the optimal solution. The decision-making

component uses techniques such as:

• Natural Language Processing (NLP) to understand the user's input and extract relevant information;

• Machine learning algorithms (OpenAI GPT models) to analyze the user's behavior and preferences;

• Knowledge representation techniques to integrate the system's knowledge and capabilities [18];

• Context-aware reasoning to consider the situation and environment in which the decision is being

made.

The decision-making process can be represented with the following formula:
𝐷 = 𝑓(𝑈, 𝐾, 𝐶, 𝑃, 𝐵) (1)

where D – the decision made by the decision-making component, U – the user's input, K – the system's

knowledge and capabilities, C – the context in which the decision is being made, P – the user's preferences and

goals, B – the system's biases and limitations.

The task execution component is responsible for carrying out the decisions made by the decision-

making component. This component generates the necessary commands and instructions to complete the task.

The task execution component is designed to:

• Translate the decision into a specific action or set of actions;

• Generate the necessary commands and instructions to complete the task;

• Integrate with other components, such as the user interface and system services, to execute the task [19].

The task execution process can be represented with the following formula:
𝑇 = 𝑓(𝐷, 𝐾, 𝐶, 𝑆) (2)

where T – the task executed by the task execution component, D – the decision made by the decision-

making component, K – the system's knowledge and capabilities, C – the context in which the task is being

executed, S – the system services and interfaces used to execute the task.

As an example, a chatbot can be designed to help users book flights. The chatbot uses a decision-making

component to determine the best flight options based on the user's input and the system's knowledge of available

flights. The decision-making component uses formula (1) to make its decision where U = "I want to book a flight

from New York to Los Angeles", K = database of flights and their prices, C = the user's budget and preferred

airline, P = “book a flight with the airline company X”, B = only flights available in the DB are supported.

The decision-making component uses this information to determine the best flight options and makes a

decision based on the user's goals and preferences. The task execution component then uses the decision made

by the decision-making component to book the flight. The task execution component uses formula (2) to execute

the task where T = book a flight, D = “booking a flight from New York to Los Angeles”, K = database of flights

and their prices, C = the user's budget and preferred airline, S = an application module capable of booking a

flight.

In the development of AI-driven real-time applications aimed at enhancing automated systems, selecting

Microsoft ecosystem and Azure cloud services represents a strategic choice driven by their robust capabilities

and support.

The decision to use .NET and Azure is based on their combined strengths in providing a scalable, secure,

and integrated environment for developing sophisticated AI applications. .NET offers extensive libraries and

development tools making it ideal for building complex software systems. Its integration with Azure cloud

further enhances these capabilities, which provide global scalability, high availability, and seamless integration

with AI services [20].

The implementation of the framework and a real-case solution involves utilizing Azure Functions for

serverless computing, Azure OpenAI for AI capabilities like natural language processing, and Azure SignalR

Service for real-time communication. These components work together seamlessly to create an AI-driven system

capable of handling user-to-AI communication effectively and executing a wide range of supported actions.

Azure OpenAI enhances the AI assistant's capabilities with advanced NLP models like GPT-4o. This

integration allows generating human-like responses based on context and user interactions, ensuring a smooth

user experience [21].

Real-time communication between users and the AI assistant is facilitated through Azure SignalR

Service. SignalR enables bi-directional communication channels [22] over WebSockets, ensuring instant updates

and notifications.

The architecture diagram in Figure 3 below illustrates the flow.

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 290

Figure 3: System architecture diagram

The AI system framework provides a comprehensive set of supported actions through Azure Functions

and Azure Cognitive Services APIs. These actions include but are not limited to:

• User data extraction from the provided information following the AI statements specified by the

administrator;

• Meeting scheduling for a specific date with conflict tracking and custom configuration;

• Leaving feedback for a particular service with an option to rate the provided support.

These APIs enable the AI assistant to execute complex tasks on behalf of users seamlessly, enhancing

the application's functionality and utility.

Every function supported by the platform that might potentially be performed by AI has to be explicitly

defined and documented in order to be provided to the AI model as part of the prompt. AI deployment then

makes an educated guess based on the information provided and extracts as many data points as possible to pass

them back to the application to be used in the function call. A flowchart diagram combining the listed functions

is presented in the Figure 4.

Figure 4: Flowchart of AI function execution

A key consideration in the implementation of UI is the integration of NLP techniques to enable fluid

conversations. The interface features a chat-like environment where users can input queries and receive responses

in real-time. Elements such as text input fields, chat bubbles for displaying messages, and interactive buttons or

menus for initiating specific actions contribute to a user-friendly design that mimics natural conversation. From

a technical standpoint, the UI implementation integrates with backend services powered by Azure OpenAI

models (GPT-4o). Figure 5 shows a screenshot of the developed system that depicts an ongoing conversation

between a user and the company’s representative (handled by AI assistant):

As the result of the conversation highlighted in the screenshot a system action was executed that booked

a meeting between the customer and the company’s expert to resolve the specified issue. There was no real

person involved in the conversation and the entire flow was completed by the AI assistant developed via the

presented framework.

 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 291

Figure 5: User-AI assistant online conversation excerpt

The system can be further extended with new actions and supported activities that broaden the set of

offered features and available tasks the AI agent can handle.

In the context of developing AI-driven real-time applications, evaluating the performance and

effectiveness of the application helps us assess its functionality and user experience [23]. The primary goal of

the application is to enhance customer interaction by providing real-time responses to inquiries, handling service

requests, and supporting personalized recommendations based on user preferences. This scenario might involve

the following metrics to be calculated and monitored:

1. Response Accuracy: measures the accuracy of the AI assistant's responses compared to the expected

correct responses, i.e. determining if the assistant correctly identifies the user's intent and provides relevant

information. The metric is calculated as the percentage of correctly answered queries divided by the total number

of queries processed during the evaluation period. High response accuracy ensures reliable service delivery and

enhances user satisfaction by providing correct information. It indicates the AI's ability to comprehend user

queries effectively, reducing the need for human intervention and enhancing operational efficiency [24]. The

following formula can be used to calculate response accuracy:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑞𝑢𝑒𝑟𝑖𝑒𝑠
 100 (3)

2. Response Time: evaluates the speed at which the AI assistant provides responses to user queries, i.e.

average time taken by the AI assistant to generate and deliver responses from the moment a user query is

received. Real-time applications require prompt responses to maintain user engagement and satisfaction. This

metric helps assess the application's responsiveness and efficiency in handling real-time interactions [25].

Identifying bottlenecks in response time allows for optimizing system performance, such as tuning AI models or

adjusting resource allocation to improve real-time responsiveness.

3. User Satisfaction: assesses users' subjective satisfaction with the AI assistant's performance and

interaction experience. Conducted through user surveys or feedback mechanisms, rating the overall experience

based on ease of use, effectiveness, and helpfulness of responses. Positive user satisfaction indicates the

application's effectiveness in meeting user needs and expectations. High metric values correlate with effective

communication and problem-solving capabilities of the AI assistant, indicating successful implementation of AI-

driven customer service enhancements.

Together, these metrics form a comprehensive framework for continuous improvement and

optimization of AI-driven applications. They enable developers and stakeholders to not only measure

performance objectively but also strategically allocate resources, prioritize feature enhancements, and innovate

to stay ahead in a competitive market.

Conclusions

AI-driven systems enhance operational efficiency by automating routine inquiries and tasks, thereby

freeing up human agents to handle more complex issues. They improve user satisfaction through timely and

accurate responses, fostering a positive perception of the company's customer service capabilities. Additionally,

the insights gained from user interactions and feedback help in continuously refining the system, ensuring it

remains relevant and effective in meeting user needs.

In terms of practical applications, this system can be integrated into existing customer service platforms,

augmenting their capabilities with advanced AI-driven interactions. It can also be adapted for use in other

domains, such as healthcare, finance, or retail, where real-time communication and AI assistance are valuable.

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 292

The scalable and flexible nature of the technology stack ensures that it can be customized to suit the specific

requirements of different industries.

The presented framework's AI and real-time capabilities enable it to analyze and predict user behavior,

providing valuable insights that can be used to improve the user experience and increase the effectiveness of the

software system. The framework's natural language processing capabilities enable it to understand and respond

to user input in a more intuitive and user-friendly way. It exemplifies the potential of integrating advanced AI

capabilities with robust cloud infrastructure, leading to innovative solutions that enhance user interactions and

operational efficiency across various sectors.

References

1. Lungu, M., & Mariana, C. (2021). Real-time applications using artificial intelligence. International

Journal of Advanced Research in Artificial Intelligence, 5(2), 45–56.

2. Smith, J. (2020). Artificial intelligence: Current trends and future directions. Berlin: Springer.

3. Collobert, R., et al. (2011). Natural language processing (almost) from scratch. Journal of Machine

Learning Research, 12, 2493–2537.

4. Radford, A., et al. (2020). Language models are few-shot learners. Advances in Neural Information

Processing Systems, 33, 1877–1901.

5. Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). Glasgow: John Wiley &

Sons.

6. Stonebraker, M., Brown, P., Zhang, D., & Becla, J. (2013). SciDB: A database management system

for applications with complex analytics. Computing in Science & Engineering, 15(3), 54–62.

7. Microsoft. (2025). Azure OpenAI Service documentation. Retrieved February 10, 2025, from

https://learn.microsoft.com/en-us/azure/ai-services/openai/.

8. Collobert, R., Weston, J., & Bottou, L. (2020). Deep learning for chatbots. Journal of Machine

Learning Research, 21, 3765–3789.

9. Fang, H., et al. (2015). From captions to visual concepts and back. Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 1473–1481.

10. Kaiser, L., et al. (2018). One model to learn them all. Proceedings of the 35th International

Conference on Machine Learning (ICML), 80, 5117–5126.

11. AbuGhoush, R., & Abu Arqoub, R. (2023). Integrating AI-based models into software development

for enhancing real-time applications. International Journal of Advanced Computer Science and Applications

(IJACSA), 14(3), 45–52.

12. Artstein, R., Gandhe, S., & Traum, D. (2022). Dialogue management for real-time applications.

Journal of Artificial Intelligence Research, 73, 237–269.

13. Botev, J., & Müller, R. (2024). Real-time communication in AI-driven software systems. IEEE

Transactions on Software Engineering, 50(2), 214–228.

14. Chen, Y., Liu, R., & Zhao, Y. (2023). Designing AI-powered chat applications with Azure

Cognitive Services. Journal of Cloud Computing: Advances, Systems and Applications, 12(1), 14–30.

15. Gao, J., Galley, M., & Li, L. (2022). Neural approaches to conversational AI. Foundations and

Trends in Information Retrieval, 15(1–2), 127–298.

16. Jurafsky, D., & Martin, J. H. (2021). Speech and language processing (3rd ed.). Denver: Pearson.

17. Kapanipathi, P., et al. (2021). Leveraging knowledge graphs for effective dialogue management in

virtual assistants. Proceedings of the AAAI Conference on Artificial Intelligence, 38(11), 6382–6389.

18. Luo, L., et al. (2021). Understanding the state of the art of conversational AI: A systematic review.

Proceedings of the AAAI Conference on Artificial Intelligence, 37(8), 9650–9657.

19. Shum, H. Y., He, X., & Li, D. (2022). From Eliza to XiaoIce: Challenges and opportunities with

social chatbots. Frontiers of Information Technology & Electronic Engineering, 23(1), 10–26.

20. Zhang, Z., et al. (2024). Real-time and efficient deep learning inference system for cloud-edge

collaborative AI applications. IEEE Transactions on Parallel and Distributed Systems, 33(9), 2011–2023.

21. Zhang, Z., et al. (2022). Real-time AI integration in healthcare: Challenges and opportunities. IEEE

Access, 10, 19175–19187.

22. McKnight, L., et al. (2020). Real-time AI and machine learning in the Azure ecosystem: Practical

applications and development frameworks. Proceedings of the IEEE International Conference on Big Data,

2145–2154.

23. Raza, K., et al. (2021). Transforming AI with Azure: A case study of real-time chat application

development. Journal of Cloud Computing: Advances, Systems and Applications, 10(1), 12–28.

24. Sahni, A., et al. (2024). Deep learning approaches for real-time chatbot development using Azure

Cognitive Services. Information Processing & Management, 61(1), Article 102652.

25. Chang, Y., et al. (2021). Real-time data integration framework for AI-driven chat applications. IEEE

Transactions on Industrial Informatics, 17(3), 2070–2078.

https://learn.microsoft.com/en-us/azure/ai-services/openai/

