TexHiuHi HayKu ISSN 2307-5732

https://doi.org/10.31891/2307-5732-2025-349-42
YK 004.5:004.8:004.9

HIKITIH AMUTPO

XapkiBchKHil HalllOHAILHUN yHIBepcuTeT pagioenekrpoHiku (XHYPE)
https://orcid.org/0000-0003-4388-4996

e-mail: nikitin27959@gmail.com

r'OJIsIH BIPA

XapkiBchKHil HalliOHANIBHUN yHIBepcuTeT pagioenekTpoHiku (XHYPE)
https://orcid.org/0000-0002-7196-5286

e-mail: vira.golan@nure.ua

METO/IA IHTEI'PALII IITYYHOT O IHTEJIEKTY TA ITH)KEHEPII 3HAHD B
ABTOMATHI IPOT'PAMHI CUCTEMHM PEAJIBHOI'O YACY

Henepepsnuii pozsumox npocpamuux cucmem umazae inmezpayii wmyunoeo inmenexmy (L) ma inowcenepii
3HAHL 3a0A NIOBUWEHHA DIGHA aAsmMoMamu3ayii, aoanmueHoCmi ma NPULHAMMA pilleHb) pedcuMi peanbHo20 Hacy.
Tpaouyiiini npoepammui piwieHHss yacmo He 30amHi 3a0080JbHUMU 3POCMAIOY] UMO2U 00 OUHAMIYHUX, ABMOHOMHUX i
IHMeNeKmyanbHUX QYHKYIOHATbHOCHEU, 0COOIUBO 8 MUX 3ACTNOCYBAHHAX, 0€ KPUMUYHO 8ANCIUSUMU € WUGUOKICMb GI02YKY
ma KowmekcmHa o00isHanicme. La cmamms npuceauena po3poodyi aeMOMAMUZ0BAHUX NPOSPAMHUX CUCTEM 3
suxopucmannsam LI, 30cepedarcyrouucs Ha ix 6npoead’cerHi 8 cepedosuyd, WO SUMASAIOMb BUCOKO20 DIGHS 83AEMOOIL ma
adanmusHocmi. 3anpononosanutl nioxio euxopucmosye xmapui cepsicu LI, 30xkpema Azure OpenAl, ons niosuwerms
weUOKoOii cucmemu yepes iHmezpayiio nepedogux memooie 06pobku npupooroi mosu (NLP), ynpaeninus dianoeamu ma
aneopummie nputinamms piuiens. 3a80axu sukopucmannio mooeneil LI, maxux ax 2enepamueHi nonepeoHbLO HAMpPeHOBAaAHi
mpancgopmepu (GPT), cucmema 30amua po3ymimu CKAAOHI 3anumu KOPUCY8a4is, NIOMPUMYBAMU KOHMEKCMHY
38’A13HICb Y PO3MOBAX | ABMOHOMHO 8UKOHYBAMU 3A60AHHA 3 MIHIMATLHUM 8MPYUAHHAM NI00uHU. Kniowoeum acnexmom
Yb020 00CTIONHCEHHA € APXIMEKMYPHA cxema, po3podiena 0 3abe3neuerts 6e3nepeditinoi 63aeMO0ii M KOMNOHEHMAMU
LI ma 306miwHIMU cucmeMamy, Wo 2apanmye 06poOKy OAHUX Y DedCUMi PeanrbHO20 4acy ma OnmuMizayilo npoyecy
npuiinammsi pivierb. OOHUM i3 OCHOBHUX 6HECKIE Yb020 OOCHIONCEHHS € OEMOHCMPAYis MO20, SIK A8MOMAMU3AYIsi HA OCHOBI
LI moouce 3nauno niosuwumu eghpekmueHicms ma HAOIUHICMb NPOSPAMHUX 3ACMOCYBAHL Y PEHCUMI DeanbHO20 Hacy.
Hocniodcenns eapianmie 6UKOpUCMAHHA Ma NPUKIAOU LIIOCMPYIOMb NPAKMUYHE BNPOBAONCEHHA YUX MEXHON02I Ois
NoKpawjeHHs KOpucmyeaybko2o 00ceioy ma onepamushoi epexmusnocmi. OyinioganvHi NOKA3HUKU OXONTIOIOMb
iHOUKamopu npoOyKmusHocmi 0 yuxkyionarvbHocmell Ha 6asi LI, wo 3ab6e3neyyroms macuimabosanicms ma HailiHicms
¥ ounamiunux cepedosuwyax. Cmamms maxoxc po3enioae nepcnekmusu no0anbiulo20 po3GUMKY ma MOICIUGT BUKIUKU 8
eanysi, akyeHmyoyu yeazy Ha HeoOXioHocmi nodanvuioi adanmayii ma e0ockouanenusa LLI-opiecnmosanux npozpamuux
cucmem 8ION0BIOHO 00 CYHACHUX MEXHONOSIUHUX MEeHOeHYIll ma nomped Kopucmysauis.

Kntouosi cnosa: wimyunuii inmenekm, asmomMamui cucmemi, NPOSPAMU 8 PEXHCUMI PeanbHO20 HAcy, Yam-0omu Ha
ocnoei LI, Azure OpenAl, inocenepis 3uams.

NIKITIN DMYTRO
GOLIAN VIRA
Kharkiv National University of Radio Electronics (NURE)

METHODS FOR INTEGRATING ARTIFICIAL INTELLIGENCE AND KNOWLEDGE
ENGINEERING INTO AUTOMATON-BASED REAL-TIME SOFTWARE SYSTEMS

The continuous evolution of software systems necessitates the integration of Artificial Intelligence (Al) and knowledge
engineering to enhance automation, adaptability, and real-time decision-making. Traditional software solutions often struggle to meet the
increasing demands for dynamic, autonomous, and intelligent functionalities, particularly in real-time applications where responsiveness
and contextual awareness are critical. This paper explores the development of Al-enhanced automated software systems, focusing on their
implementation in environments that require high levels of interaction and adaptability. The proposed approach leverages cloud-based Al
services, particularly Azure OpenAl, to enhance system responsiveness through the integration of advanced natural language processing
(NLP), dialogue management, and decision-making algorithms. By utilizing AI models such as generative pre-trained transformers (GPT),
the system is capable of understanding complex user queries, maintaining contextual coherence in conversations, and autonomously
executing tasks with minimal human intervention. A key aspect of this research is the architectural framework designed to facilitate seamless
interaction between Al components and external systems, ensuring real-time data processing and decision optimization. One of the core
contributions of this study is demonstrating how Al-driven automation can significantly enhance the efficiency and reliability of real-time
software applications. Case studies and examples illustrate the practical implementation of these technologies in enhancing user experience
and operational efficiency. Evaluation metrics encompass performance indicators for Al-driven functionalities, ensuring scalability and
reliability in dynamic environments. The paper also discusses future development prospects and potential challenges in the field, emphasizing
the need for continuous adaptation and improvement of Al-driven software systems in line with modern technological trends and user
requirements.

Keywords: artificial intelligence, automaton-based systems, real-time applications, Al-powered chatbots, Azure OpenAl,
knowledge engineering.

Problem statement
In recent years, the integration of artificial intelligence (Al) into software systems has revolutionized
the capabilities of applications, particularly in dynamic real-time environments [1]. Traditional software systems
often struggle to adapt quickly to changing user needs and real-time data streams. However, advancements in Al
and knowledge engineering offer promising solutions to enhance the responsiveness and intelligence [2] of
software applications.

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 285

https://orcid.org/0000-0003-4388-4996
mailto:nikitin27959@gmail.com
https://orcid.org/0000-0002-7196-5286
mailto:vira.golan@nure.ua

Technical sciences ISSN 2307-5732

The motivation behind this research stems from the growing demand for software systems that can
dynamically interact with users, provide real-time communication features, and perform complex tasks
autonomously. Current systems often lack the ability to understand natural language, engage in meaningful
dialogue, and make contextually appropriate decisions without human intervention. Al technologies, including
natural language processing (NLP) [3], dialogue systems, and decision-making algorithms, provide a pathway
to address these limitations effectively.

By leveraging Al models integrated into software systems, it becomes feasible to create interactive
applications where users can engage in conversations with Al assistants that mimic human-like interactions.
Such capabilities not only enhance user experience but also enable applications to handle diverse tasks
efficiently, ranging from customer support to real-time data analysis and decision support.

Literature and publications survey

Modern trends in software system development highlight the growing role of artificial intelligence (AI)
and knowledge engineering in creating automated solutions for dynamic real-time applications. Numerous
studies explore the use of Al to enhance the efficiency of software systems, particularly through the integration
of natural language processing (NLP) models, dialogue systems, and decision-making algorithms.

In studies "Real-time applications using artificial intelligence" [1] and "Language Models are Few-Shot
Learners" [4], researchers examine the application of neural networks and deep learning to automate data
processing and real-time user interactions. The authors emphasize the importance of using generative pre-trained
transformers (GPT) to improve contextual analysis and intent recognition in dialogue systems.

Research "Real-Time Communication in Al-Driven Software Systems" [13] on cloud-based Al
applications demonstrates significant progress in computational capabilities and scalability. Study "Designing
Al-Powered Chat Applications with Azure Cognitive Services" [14] explores the integration of Azure OpenAl
Services for implementing distributed software systems, ensuring stable real-time processing of large data
volumes.

Key aspects of effective dialogue system management and real-time support are discussed in "Deep
Learning for Chatbots" [8] and "Deep Learning Approaches for Real-Time Chatbot Development Using Azure
Cognitive Services" [24]. The authors highlight that advanced dialogue management models and intent
recognition techniques enable the creation of intuitive Al-human interaction systems, which are particularly
relevant for automated customer service.

Additionally, optimizing software systems using big data analysis and machine learning methods is a
prominent research focus of "Real-Time Data Integration Framework for AI-Driven Chat Applications" [25]
work. These studies emphasize the necessity of integrating adaptive learning algorithms to improve decision-
making accuracy and enable self-tuning software systems that adjust to dynamic environmental changes.

Thus, the analysis of contemporary publications confirms the relevance of integrating Al and knowledge
engineering into automated software systems. Further research focuses on improving the adaptability, scalability,
and interactivity of such solutions, aligning with the objectives set in this study.

Objectives

The aim of this research is to design and develop an Al-enhanced software system capable of supporting
dynamic real-time applications through advanced Al and knowledge engineering techniques [4]. The primary
goal is to overcome the limitations of traditional software systems by integrating Al models that can interact with
users in natural language, understand context, and execute tasks autonomously in real-time scenarios.

The core objectives include:

1. Designing an architectural framework: developing a robust framework that integrates Al components
such as natural language processing, dialogue management, and decision-making algorithms seamlessly into the
software system;

2. Enhancing user interaction: creating an intuitive UX where users can engage in natural conversations
with Al assistants, allowing for real-time communication and task execution [5] without the need for human
intervention;

3. Improving system responsiveness: enabling the software system to dynamically adapt to changing
user needs and environmental conditions, ensuring timely and accurate responses;

4. Demonstrating practical applications: providing proof-of-concept through a case study or
experiments that illustrate the effectiveness and practicality of the proposed Al-enhanced software system in
real-world scenarios.

5. By achieving these objectives, this research aims to contribute to the advancement of Al-driven
software systems tailored for dynamic real-time applications, ultimately enhancing efficiency, usability, and
adaptability in various domains such as customer service, healthcare, finance, and beyond.

Presentation of the main material

The methodology of this research involves designing and implementing an Al-enhanced software
system enhanced by dynamic real-time capabilities. The system aims to leverage advanced Al techniques and
knowledge engineering principles to improve its responsiveness, intelligence, and usability in real-world
scenarios.

The foundation of the proposed system lies in its architectural framework, designed to accommodate
various Al components seamlessly. This framework integrates modules for natural language processing (NLP),

286 Herald of Khmelnytskyi national university, Issue2, 2025 (349)

TexHiuHi HayKu ISSN 2307-5732

dialogue management, decision-making algorithms, and real-time data processing. Each module plays a crucial
role in enabling the system to understand user inputs, generate contextually relevant responses, and execute tasks
autonomously. The core components of the system:

e Azure OpenAl Services: includes modules for natural language processing (NLP), dialogue
management, and decision-making [6];

e Data Processing and Integration Layer: manages real-time data streams and integrates with external
APIs;

o User Interface: provides an intuitive interface for users to interact with the Al-powered functionalities.

The relationship diagram for the listed components is shown in Figure 1.

User Interface

Dialogue Management

Decision Making

Data Processing

Azure OpenAl Services

Figure 1: Architectural framework core components

The following elements are present in the diagram:

o User Interface: provides an interface for users to interact with the system;

¢ Dialogue Management: manages interactive dialogues with users;

o Decision Making: uses Al models to make context-aware decisions;

o Data Processing: handles real-time data processing and integration;

o Azure OpenAl Services: includes NLP, dialogue management, and decision-making services.

Central to the system's functionality is the integration of Al models that enable natural language
understanding (NLU) and generation (NLG), sentiment analysis, intent recognition, and context-aware decision-
making. Azure OpenAl services [7] provide pre-trained models hosted on Azure and accessed via APIs, ensuring
scalability and reliability in handling diverse user interactions and data inputs.

The system facilitates real-time communication [8] capabilities through interactive dialogue systems.
Users can engage in natural conversations with Al agents, which can comprehend complex queries, retrieve
relevant information from databases or external sources, and provide instantaneous responses or actions.

Considerations for scalability and integration with existing software infrastructure are paramount. The
system is designed to be modular and scalable, allowing for easy integration with different application
environments and the ability to handle increasing volumes of data and user interactions over time.

The integration of Al models for real-time communication forms a pivotal component within the
architecture of the Al-enhanced software system [9]. Leveraging the Azure OpenAl SDK, we aim to empower
the application with advanced capabilities in natural language processing (NLP), dialogue management, and
decision-making, thereby enhancing user interaction and system responsiveness.

First, we initialize the Azure OpenAl SDK clients to access various services provided by Azure,
including text generation, sentiment analysis, and conversational Al capabilities. The system utilizes Azure's
NLU capabilities to interpret user inputs and extract relevant information [10]. This involves preprocessing user
queries to understand intents and entities, enabling the system to respond contextually.

Azure OpenAl's dialogue management module [11] allows the system to maintain context across
conversations, ensuring coherent interactions over multiple exchanges with users. This facilitates a more natural
user experience.

Integrating decision-making algorithms based on Azure OpenAl's capabilities enables the system to
make informed decisions autonomously. This includes selecting appropriate responses or actions based on the
analyzed context and user intent.

Through the integration of these Al models, the software system supports real-time communication
where users can interact fluidly with Al agents. The agents can understand natural language queries [12],
maintain conversational context, and execute tasks autonomously, providing immediate and relevant responses.
Class diagram of the described implementation is presented in Figure 2.

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 287

Technical sciences ISSN 2307-5732

OpenAlClient
DecisionMaking

+Uri Endpoint
= +OpenAlClient AlClient
+AzureKeyCredential ApiKey

+DecisionMaking(OpenAlClient aiClient)
+GetChatCompletionsAsync(ChatCompletionsOptions options, CancellationToken ct)) B
+GenerateCompletionResponse(ContextData contextData) : : CompletionResponse

+OpenAlClient(Uri endpoint, AzureKeyCredential apiKey)

Uses Uses Uses Generates
\
[v [
| 4 |
¢ ChatCompletionsOptions l
. ContextData
AzureKeyCredential 3 .
+string DeploymentName CompletienResponse
. . +float Temperature +double Temperature
+string ApiKey . R . .
+int ChoiceCount +string Conditions +string Response
. . +List Messages +int Count
+constructor(string apiKey)
+AddMessage (ChatRequestMessage message)

Contains

ChatRequestMessage

+string Content
+string Sender

Inherits Inherits
[
L
ChatRequestSystemMessage ChatRequestUserMessage
+string SystemMessage +string UserMessage
+constructor(string systemMessage) +constructor(string userMessage)

Figure 2: Class Diagram of Azure OpenAl client interaction and dialogue management

One of the primary uses of NLP in real-time communication is to facilitate interaction between users
and Al models. For instance, in a chatbot application [13], NLP techniques are used to parse the user's input,
understand the context and the intent, and generate an appropriate response. This involves several sub-tasks like
tokenization [14], part-of-speech tagging, named entity recognition, and dependency parsing.

Another important aspect is understanding the sentiment or emotion behind the user's input. This can
be achieved using sentiment analysis [15], which is a common application of NLP. By understanding the
sentiment of the user's input, the AI model can generate responses that are more empathetic and contextually
appropriate.

After the user’s input has been received, the application must build the prompt and ask Al to provide
the response with either a user-friendly message or a function call (i.e. guiding an application on transforming
the fetched parameters and data properties into an executable action).

NLP also plays a crucial role in real-time translation services. By using techniques such as machine
translation and sequence-to-sequence models, Al models can provide instant translation between different
languages, enabling seamless communication between users who speak different languages.

Moreover, NLP techniques can also be used for speech recognition and synthesis in voice assistants
[16]. Techniques like automatic speech recognition (ASR) convert spoken language into written text, and text-
to-speech (TTS) techniques convert written text into spoken language. These techniques enable voice assistants
to understand user commands and respond verbally, providing a more natural and intuitive user experience.

To enable real-time communication via Al assistants between humans and machines, the proposed
framework relies on the use of AI models that can understand and respond to natural language inputs. One of the
key approaches used in the framework is the dialogue system, which is designed to simulate human-like
conversations with users.

Dialogue systems powered by intelligent assistants are complex Al models that use natural language
processing (NLP) and machine learning (ML) algorithms [17] to understand and respond to user inputs. They
are capable of generating responses that are tailored to the user's specific needs and preferences and can even
adapt to changes in the user's behavior and preferences over time.

Another important Al model used in the framework is the conversational agent, which is designed to
engage users in natural-sounding conversations. Conversational agents use a combination of NLP and ML
algorithms to understand and respond to user inputs and can even use humor and personality to make interactions
more engaging.

The dialogue system and conversational agent Al models are used in conjunction with each other to
create a seamless and intuitive communication experience for users. The dialogue system is responsible for
understanding and processing user inputs, while the conversational agent is responsible for generating responses
that are tailored to the user's specific needs and preferences.

Together, these Al models enable the development of real-time communication systems that can
understand and respond to user inputs in a natural and intuitive way. This allows users to interact with machines

288 Herald of Khmelnytskyi national university, Issue2, 2025 (349)

TexHiuHi HayKu ISSN 2307-5732

in a way that is similar to interacting with other humans and enables the development of a wide range of
applications that can benefit from real-time communication, such as customer service chatbots, virtual assistants,
and more.

The developed framework incorporates a decision making and task execution component, which enables
the Al system to make informed decisions and take actions based on the user's inputs, the system's knowledge
and capabilities, and the context in which the interaction is taking place.

The decision-making component employs a combination of machine learning algorithms and
knowledge representation techniques to analyze the user's inputs and determine the most effective course of
action. This component is responsible for evaluating the user's goals, preferences, and constraints, as well as the
system's capabilities, limitations, and potential biases, to determine the optimal solution. The decision-making
component uses techniques such as:

o Natural Language Processing (NLP) to understand the user's input and extract relevant information;

e Machine learning algorithms (OpenAl GPT models) to analyze the user's behavior and preferences;

o Knowledge representation techniques to integrate the system's knowledge and capabilities [18];

o Context-aware reasoning to consider the situation and environment in which the decision is being
made.

The decision-making process can be represented with the following formula:

D=f(U,K,CP,B) @8]

where D — the decision made by the decision-making component, U — the user's input, K — the system's

knowledge and capabilities, C — the context in which the decision is being made, P — the user's preferences and
goals, B — the system's biases and limitations.

The task execution component is responsible for carrying out the decisions made by the decision-
making component. This component generates the necessary commands and instructions to complete the task.
The task execution component is designed to:

o Translate the decision into a specific action or set of actions;

o Generate the necessary commands and instructions to complete the task;

e Integrate with other components, such as the user interface and system services, to execute the task [19].

The task execution process can be represented with the following formula:

T=f(D,K,CS) (2)

where T — the task executed by the task execution component, D — the decision made by the decision-

making component, K — the system's knowledge and capabilities, C — the context in which the task is being
executed, S — the system services and interfaces used to execute the task.

As an example, a chatbot can be designed to help users book flights. The chatbot uses a decision-making
component to determine the best flight options based on the user's input and the system's knowledge of available
flights. The decision-making component uses formula (1) to make its decision where U = "I want to book a flight
from New York to Los Angeles", K = database of flights and their prices, C = the user's budget and preferred
airline, P = “book a flight with the airline company X”, B = only flights available in the DB are supported.

The decision-making component uses this information to determine the best flight options and makes a
decision based on the user's goals and preferences. The task execution component then uses the decision made
by the decision-making component to book the flight. The task execution component uses formula (2) to execute
the task where T = book a flight, D = “booking a flight from New York to Los Angeles”, K = database of flights
and their prices, C = the user's budget and preferred airline, S = an application module capable of booking a
flight.

In the development of Al-driven real-time applications aimed at enhancing automated systems, selecting
Microsoft ecosystem and Azure cloud services represents a strategic choice driven by their robust capabilities
and support.

The decision to use .NET and Azure is based on their combined strengths in providing a scalable, secure,
and integrated environment for developing sophisticated Al applications. .NET offers extensive libraries and
development tools making it ideal for building complex software systems. Its integration with Azure cloud
further enhances these capabilities, which provide global scalability, high availability, and seamless integration
with Al services [20].

The implementation of the framework and a real-case solution involves utilizing Azure Functions for
serverless computing, Azure OpenAl for Al capabilities like natural language processing, and Azure SignalR
Service for real-time communication. These components work together seamlessly to create an Al-driven system
capable of handling user-to-Al communication effectively and executing a wide range of supported actions.

Azure OpenAl enhances the Al assistant's capabilities with advanced NLP models like GPT-40. This
integration allows generating human-like responses based on context and user interactions, ensuring a smooth
user experience [21].

Real-time communication between users and the Al assistant is facilitated through Azure SignalR
Service. SignalR enables bi-directional communication channels [22] over WebSockets, ensuring instant updates
and notifications.

The architecture diagram in Figure 3 below illustrates the flow.

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 289

Technical sciences ISSN 2307-5732

User SignalRService AzureFunctions AzureOpenAl

Sends Message

v

Trigger Function

v

Process Request

v

Generate Response

User SignalRService AzureFunctions AzureOpenAl
Figure 3: System architecture diagram

The Al system framework provides a comprehensive set of supported actions through Azure Functions
and Azure Cognitive Services APIs. These actions include but are not limited to:

e User data extraction from the provided information following the Al statements specified by the
administrator;

e Meeting scheduling for a specific date with conflict tracking and custom configuration;

¢ Leaving feedback for a particular service with an option to rate the provided support.

These APIs enable the Al assistant to execute complex tasks on behalf of users seamlessly, enhancing
the application's functionality and utility.

Every function supported by the platform that might potentially be performed by Al has to be explicitly
defined and documented in order to be provided to the Al model as part of the prompt. Al deployment then
makes an educated guess based on the information provided and extracts as many data points as possible to pass
them back to the application to be used in the function call. A flowchart diagram combining the listed functions
is presented in the Figure 4.

‘ User Input + Context ‘

l

Chat Message Handler

[uses]/ \prepares
Functionﬁ(andling l

Al Function Handler User Response
‘ Fetch User Info Function ‘ Schedule Meeting Function Leave Feedback Function ‘
Function Definition: Function Definition: Function Definition:
fetchUserInfo bookConsultation leaveFeedback

Figure 4: Flowchart of Al function execution

A key consideration in the implementation of UI is the integration of NLP techniques to enable fluid
conversations. The interface features a chat-like environment where users can input queries and receive responses
in real-time. Elements such as text input fields, chat bubbles for displaying messages, and interactive buttons or
menus for initiating specific actions contribute to a user-friendly design that mimics natural conversation. From
a technical standpoint, the Ul implementation integrates with backend services powered by Azure OpenAl
models (GPT-40). Figure 5 shows a screenshot of the developed system that depicts an ongoing conversation
between a user and the company’s representative (handled by Al assistant):

As the result of the conversation highlighted in the screenshot a system action was executed that booked
a meeting between the customer and the company’s expert to resolve the specified issue. There was no real
person involved in the conversation and the entire flow was completed by the Al assistant developed via the
presented framework.

290 Herald of Khmelnytskyi national university, Issue2, 2025 (349)

TexHiuHi HayKu ISSN 2307-5732

-o Hi, my name is Dmytro. I'm seeking support to resolve a technical
S issue. Can we set up a call to go over it please? I'm available

tomorrow at 3 PM.

14:27 PM | Jun 13

Nice to meet you Dmytro, I'm Marta and I'm here to help you. Thank (-:;}
you for contacting us, your appointment has been scheduled for June
14 at 3 PM. Is there anything else we can do for you?
14:28 PM | Jun 13
e 0Ok, thank you. No, that's all for now. I'll share the details tomorrow.

14:29 PM | Jun 13

Thank you Dmytro! Let us know if we can assist you with any other ‘,'\53
question. We would also highly appreciate it if you could leave your ed
) Type message e ® 4

¢

Figure 5: User-Al assistant online conversation excerpt

The system can be further extended with new actions and supported activities that broaden the set of
offered features and available tasks the Al agent can handle.

In the context of developing Al-driven real-time applications, evaluating the performance and
effectiveness of the application helps us assess its functionality and user experience [23]. The primary goal of
the application is to enhance customer interaction by providing real-time responses to inquiries, handling service
requests, and supporting personalized recommendations based on user preferences. This scenario might involve
the following metrics to be calculated and monitored:

1. Response Accuracy: measures the accuracy of the Al assistant's responses compared to the expected
correct responses, i.e. determining if the assistant correctly identifies the user's intent and provides relevant
information. The metric is calculated as the percentage of correctly answered queries divided by the total number
of queries processed during the evaluation period. High response accuracy ensures reliable service delivery and
enhances user satisfaction by providing correct information. It indicates the Al's ability to comprehend user
queries effectively, reducing the need for human intervention and enhancing operational efficiency [24]. The
following formula can be used to calculate response accuracy:

Number of correct responses

A = 100 3
couracy Total number of queries ®

2. Response Time: evaluates the speed at which the Al assistant provides responses to user queries, i.e.
average time taken by the Al assistant to generate and deliver responses from the moment a user query is
received. Real-time applications require prompt responses to maintain user engagement and satisfaction. This
metric helps assess the application's responsiveness and efficiency in handling real-time interactions [25].
Identifying bottlenecks in response time allows for optimizing system performance, such as tuning AI models or
adjusting resource allocation to improve real-time responsiveness.

3. User Satisfaction: assesses users' subjective satisfaction with the Al assistant's performance and
interaction experience. Conducted through user surveys or feedback mechanisms, rating the overall experience
based on ease of use, effectiveness, and helpfulness of responses. Positive user satisfaction indicates the
application's effectiveness in meeting user needs and expectations. High metric values correlate with effective
communication and problem-solving capabilities of the Al assistant, indicating successful implementation of Al-
driven customer service enhancements.

Together, these metrics form a comprehensive framework for continuous improvement and
optimization of Al-driven applications. They enable developers and stakeholders to not only measure
performance objectively but also strategically allocate resources, prioritize feature enhancements, and innovate
to stay ahead in a competitive market.

Conclusions

Al-driven systems enhance operational efficiency by automating routine inquiries and tasks, thereby
freeing up human agents to handle more complex issues. They improve user satisfaction through timely and
accurate responses, fostering a positive perception of the company's customer service capabilities. Additionally,
the insights gained from user interactions and feedback help in continuously refining the system, ensuring it
remains relevant and effective in meeting user needs.

In terms of practical applications, this system can be integrated into existing customer service platforms,
augmenting their capabilities with advanced Al-driven interactions. It can also be adapted for use in other
domains, such as healthcare, finance, or retail, where real-time communication and Al assistance are valuable.

Herald of Khmelnytskyi national university, Issue2, 2025 (349) 291

Technical sciences ISSN 2307-5732

The scalable and flexible nature of the technology stack ensures that it can be customized to suit the specific
requirements of different industries.

The presented framework's Al and real-time capabilities enable it to analyze and predict user behavior,
providing valuable insights that can be used to improve the user experience and increase the effectiveness of the
software system. The framework's natural language processing capabilities enable it to understand and respond
to user input in a more intuitive and user-friendly way. It exemplifies the potential of integrating advanced Al
capabilities with robust cloud infrastructure, leading to innovative solutions that enhance user interactions and
operational efficiency across various sectors.

References

1. Lungu, M., & Mariana, C. (2021). Real-time applications using artificial intelligence. International
Journal of Advanced Research in Artificial Intelligence, 5(2), 45-56.

2. Smith, J. (2020). Artificial intelligence: Current trends and future directions. Berlin: Springer.

3. Collobert, R., et al. (2011). Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12, 2493-2537.

4. Radford, A., et al. (2020). Language models are few-shot learners. Advances in Neural Information
Processing Systems, 33, 1877-1901.

5. Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). Glasgow: John Wiley &
Sons.

6. Stonebraker, M., Brown, P., Zhang, D., & Becla, J. (2013). SciDB: A database management system
for applications with complex analytics. Computing in Science & Engineering, 15(3), 54-62.

7. Microsoft. (2025). Azure OpenAl Service documentation. Retrieved February 10, 2025, from
https://learn.microsoft.com/en-us/azure/ai-services/openai/.

8. Collobert, R., Weston, J., & Bottou, L. (2020). Deep learning for chatbots. Journal of Machine
Learning Research, 21, 3765-3789.

9. Fang, H., et al. (2015). From captions to visual concepts and back. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 1473-1481.

10. Kaiser, L., et al. (2018). One model to learn them all. Proceedings of the 35th International
Conference on Machine Learning (ICML), 80, 5117-5126.

11. AbuGhoush, R., & Abu Arqoub, R. (2023). Integrating Al-based models into software development
for enhancing real-time applications. International Journal of Advanced Computer Science and Applications
(IJACSA), 14(3), 45-52.

12. Artstein, R., Gandhe, S., & Traum, D. (2022). Dialogue management for real-time applications.
Journal of Artificial Intelligence Research, 73, 237-269.

13. Botev, J., & Miiller, R. (2024). Real-time communication in Al-driven software systems. IEEE
Transactions on Software Engineering, 50(2), 214-228.

14. Chen, Y., Liu, R., & Zhao, Y. (2023). Designing Al-powered chat applications with Azure
Cognitive Services. Journal of Cloud Computing: Advances, Systems and Applications, 12(1), 14-30.

15. Gao, J., Galley, M., & Li, L. (2022). Neural approaches to conversational Al. Foundations and
Trends in Information Retrieval, 15(1-2), 127-298.

16. Jurafsky, D., & Martin, J. H. (2021). Speech and language processing (3rd ed.). Denver: Pearson.

17. Kapanipathi, P., et al. (2021). Leveraging knowledge graphs for effective dialogue management in
virtual assistants. Proceedings of the AAAI Conference on Artificial Intelligence, 38(11), 6382—6389.

18. Luo, L., et al. (2021). Understanding the state of the art of conversational Al: A systematic review.
Proceedings of the AAAI Conference on Artificial Intelligence, 37(8), 9650-9657.

19. Shum, H. Y., He, X., & Li, D. (2022). From Eliza to Xiaolce: Challenges and opportunities with
social chatbots. Frontiers of Information Technology & Electronic Engineering, 23(1), 10-26.

20. Zhang, Z., et al. (2024). Real-time and efficient deep learning inference system for cloud-edge
collaborative Al applications. IEEE Transactions on Parallel and Distributed Systems, 33(9), 2011-2023.

21. Zhang, Z., et al. (2022). Real-time Al integration in healthcare: Challenges and opportunities. [IEEE
Access, 10, 19175-19187.

22. McKnight, L., et al. (2020). Real-time Al and machine learning in the Azure ecosystem: Practical
applications and development frameworks. Proceedings of the IEEE International Conference on Big Data,
2145-2154.

23. Raza, K., et al. (2021). Transforming Al with Azure: A case study of real-time chat application
development. Journal of Cloud Computing: Advances, Systems and Applications, 10(1), 12-28.

24. Sahni, A., et al. (2024). Deep learning approaches for real-time chatbot development using Azure
Cognitive Services. Information Processing & Management, 61(1), Article 102652.

25. Chang, Y., etal. (2021). Real-time data integration framework for Al-driven chat applications. IEEE
Transactions on Industrial Informatics, 17(3), 2070-2078.

292 Herald of Khmelnytskyi national university, Issue2, 2025 (349)

https://learn.microsoft.com/en-us/azure/ai-services/openai/

