Technical sciences ISSN 2307-5732

https://doi.org/10.31891/2307-5732-2025-353-42
VJIK 004.415

YATSENKO ROMAN

Lviv Polytechnic National University
https://orcid.org/0009-0009-4662-7873
e-mail: roman.o.yatsenko@lpnu.ua
SERDIUK PAVLO

Lviv Polytechnic National University
https://orcid.org/0000-0002-2677-3170
e-mail: pavlo.v.serdiuk@lpnu.ua

EFFECT OF FILE EDITING FREQUENCY ON SOFTWARE QUALITY

Understanding the impact of file editing frequency on software quality is crucial for maintaining and improving
software reliability and maintainability. Software quality is a multifaceted concept that involves various aspects such as
code maintainability, reliability, and adherence to principles like the Single Responsibility Principle (SRP). The Single
Responsibility Principle emphasizes that a class or module should have only one reason to change, suggesting that high-
quality software should be modular and focused.

Frequent edits to files in a GIT repository can be indicative of underlying issues such as evolving requirements,
poor initial design, or violations of SRP, leading to an increase in technical debt. This debt can manifest in the form of
code that is difficult to maintain, prone to bugs, and challenging to extend. While existing research has explored the
relationship between file editing frequency and software quality, this area remains under-explored, particularly in the
context of the cumulative effect of these edits on long-term software quality.

The objective of this study is to establish a more definitive link between the frequency of file edits and software
quality. This will be achieved by introducing a new metric, the Consecutive File Edit Coefficient (CFE), and using it
alongside traditional software quality metrics to analyze and compare the impact of frequent file edits. By doing so, this
research aims to provide insights that can inform better practices in software development and maintenance.

The comparative analysis across these open-source repositories reveals consistent patterns that highlight the
risks associated with frequent file edits. High CFE values are often accompanied by increased complexity, more code
smells, higher violations, and a greater number of bugs.

Keywords: Software quality, Consecutive file edit coefficient, Technical debt

SINEHKO POMAH
CEPJIOK ITABJIO

Harionanbunii yaiBepcureT «JIbBiBCbKa MOMITEXHIKA»

BILJIMB YACTOTHU PEJATYBAHHSA ®AMITY HA SIKICTh ITIPOTPAMHOI'O 3ABE3IIEYEHHS

Posyminnsa ennuey wacmomu peoazyeanHs ¢hailnié Ha AKICMb NPOSPAMHOZO 3a0e3nedeHHs € HAO38UYALHO BANCIUSUM Ol
RIOMPUMKU Ma NOKpawyerHsa Hadiunocmi i cynposionocmi kody. HAkicmb npozpamnozo 3abesnevents — ye 6azamozpanne NOHAMMs, wo
OXONJIIOE ACNEeKmU CYNPOBIOHOCH, HAOTUHOCMI MA OOMPUMAHHSA NPUHYUNIE NPOEKMYBAHHS, 30Kpema IIpunyuny eounoi 8i0nosioarsHocmi
(SRP). 32iono 3 SRP, koxcen kiac abo MoOyib MA€ Mamu jquuie OOHY NPUYUHY Olisl 6HECEHHA 3MIH, WO CBI0YUMb NPO BANHCIUBICHIL
MOOYIbHOCE MA YIMKO20 (POKYCY Y BUCOKOSKICHOMY NPOZPAMHOMY 3a6e3neueHHi.

Yacme peoazysanus aiinie y GIT-penosumopii modce 8xazyeamu Ha nNpuxoéaui npobiemu, maxi K WeUOKO 3MIiHIOBAHI
8UMO2U, HEOOCKOHANUI NOYAmMKO8Ull Ousaun uu nopywenus SRP, wo 3ymoenoe spocmanns mexuiunozo 6opey. Taxuii 6ope modice
NPOAGIAMUCA Y CKAAOHOCMI CYNPOBOOY KOOY, CXUTLHOCII 00 NOMUNOK I MPYOHOWAX i3 NOOAIbWUM po3uiupenuam. Xoua nonepeoui
00CIONHCEH S BIHCe PO32NAAAIU 38 130K MIdHC Yacmomoro pedazyeéanus Qaiinie i axicmio 113, ya mema doci Hedocmamuvo ucgimiend,
0C00.UBO WOOO KYMYIAMUBHO20 6NIUEY NOSMOPHUX 3MiH HA 00820CHPOKOBY AKICTb.

Memoro ybo2o docriddcenns ¢ Oinbu YimKe 6CIAHOBIEHHS 63ACMO38 S3KY MIJIC YACMOMOIO pedazysants (aiini i AKicmio
npocpamHo2o 3abesneueHHs. 3 yiero mMemoio 3anponoHoearo Hogy mempuky — Koeghiyienm nocnioosnoeo peoazysanus gpainy (CFE).
Tloeonyrouu it 3 mpaouyitiHumu Mempuxamu akocmi, y 00CHioxcenHi 6yoe npo8edeHo aHdai3 i NOPIGHAHHS BNIUBY YACMUX 3MiH Qailnie Ha
noxasnuku axocmi I13. Ouikyembcs, wo pe3yrbmamu Hadadyms po3pooHUKaM YiHHI peKoMeHOayii wooo Kpawjux npakmux NPOEKMY6aAHHA
ma cynposooy, CHPAMOBAHUX HA NiOBUWEHHS CMADIIbHOCE MA HAOIUHOCMI NPOZPAMHO20 3a0e3nedeHHs.

Kurouosi crosa. saKicme npoecpamuo2o 3abesnedenHs, KoeQiyieHm nociioo6Ho20 pedazy8anHs, mexHiunui 6ope

Crarrs Haaiinia 1o penakuii / Received 09.04.2025
[MpuitasTa no npyxy / Accepted 05.05.2025

Problem Statement

In today's context, ensuring high software quality is critically important for its stability and
maintainability. Frequent file modifications in version control systems such as GIT often indicate issues in the
initial design and the accumulation of technical debt.

Traditional analysis methods do not always account for the cumulative impact of repeated changes,
creating a need for a new metric — the Consecutive File Edit coefficient (CFE). This metric will enable
quantitative assessment of the impact of repeated modifications on the structural and cognitive complexity of
code, thus contributing to the timely identification of problematic areas and optimization of development
processes.

296 Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

https://orcid.org/0009-0009-4662-7873
mailto:roman.o.yatsenko@lpnu.ua
https://orcid.org/0000-0002-2677-3170
mailto:pavlo.v.serdiuk@lpnu.ua

TexHiuHi HayKu ISSN 2307-5732

Analysis of research and publications

Modern research in the field of software quality measurement demonstrates a variety of approaches
to defining and aggregating metrics that reflect both the internal structure of code and its external interactions.

According to Dalla Palma et al. (2020) [5], a catalog of 46 metrics specifically adapted for
Infrastructure-as-Code (IaC) was proposed. The authors emphasize that traditional metrics developed for
general-purpose programming languages are not always applicable to domain-specific languages used in
modern DevOps practices.

Early studies, such as those by Kafura and Henry (1981) [2] and Gaffney Jr. (1981) [8], laid the
foundation for the objective measurement of quality through information flow analysis and other indicators.

These studies highlight the importance of automating metric collection at the design stage, enabling
the identification of structural issues long before implementation.

In the work by Jiang et al. (2008) [10], a comparative analysis of models based on design-level and
code-level metrics for predicting defective modules was conducted. The results show that models based on
code metrics generally outperform those using only design metrics, and their combination yields even higher
predictive accuracy.

The study by Rosenberg and Hyatt (1997) [1] focuses on the development of specific metrics for
object-oriented systems, analyzing both the internal structure of classes (e.g., cyclomatic complexity) and
external interactions between objects. This allows for effective assessment of maintainability and reusability.

The research by Oliveira et al. (2008) [9] analyzes the impact of accumulated complexity on the
quality of embedded software, highlighting the importance of using aggregated indicators to identify potential
defects.

Furthermore, Mordal et al. (2013) [4] propose methods for aggregating individual metrics to obtain a
holistic quality assessment at the system level, which is particularly relevant for large industrial projects.

The study by Rawat et al. (2012) [6] emphasizes that the use of various types of metrics not only helps
predict defects but also contributes to the overall improvement of development and quality assurance processes.

Finally, the work by Lee (2014) [12] integrates quality factors with corresponding metrics using
quality models (e.g., McCall, Boehm, FURPS, Dromey, ISO/IEC 25000). This enables the development of a
coherent methodology that ensures metric application across all stages of the software lifecycle for timely
defect detection.

Thus, the literature points to the necessity of a comprehensive approach to software quality
measurement—one that incorporates domain specificity, development phase, and the aggregation of various
metrics to ensure effective product quality control.

Formulation of the article goals

The aim of this article is to establish and quantitatively assess the relationship between file editing
frequency and software quality indicators. To achieve this goal, the following objectives are proposed:

1. To develop and justify a new metric — the Consecutive File Edit coefficient (CFE), which allows
tracking the cumulative effect of repeated changes.

2. To integrate the CFE calculation with traditional metrics provided by static code analysis tools
(e.g., SonarQube) for comprehensive comparison and analysis.

3. To investigate, using several open-source GIT repositories, the impact of a high CFE on structural
complexity, technical debt, defect risk, and code maintainability indicators.

Thus, the article aims to demonstrate the practical significance of the new CFE metric in identifying
code areas that may require additional developer attention and to provide recommendations for improving
software development and maintenance processes.

Summary of the main material

Existing Methods for GIT Repository Analysis

Overview of GIT Analysis Techniques

Analyzing GIT repository history is a widely used approach for understanding the dynamics of
software development and its impact on quality. Previous studies have utilized a variety of methodologies to
explore the relationship between file editing frequency and software quality. For example, studies like [1] have
empirically examined how file editing patterns affect software quality, concluding that frequently edited files
tend to have more critical bugs. This suggests that frequent changes may indicate evolving requirements or
poor initial code quality.

Other significant contributions include the development of tools like Codebook, as discussed in [2],
which helps in discovering and exploiting relationships in software repositories. Codebook analyzes historical
data from repositories to identify patterns in file changes and their impact on the overall quality of the software.
Such tools provide valuable insights into areas of the codebase that require more attention due to frequent
modifications.

SonarQube and SonarScanner

SonarQube and SonarScanner are popular tools for analyzing software quality. These tools compile a
range of static software metrics, such as lines of code (LOC), cyclomatic complexity, and coupling between

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 297

Technical sciences ISSN 2307-5732

objects (CBO), which are linked to software quality characteristics like reliability and maintainability. For
instance, [3] focuses on how these metrics can be aggregated from GitHub repositories to provide a
comprehensive view of a project's health.

SonarQube's approach to code quality analysis is particularly robust, as it includes the detection of
code smells, technical debt, and other maintainability issues. This makes it a valuable tool for assessing the
long-term quality of software projects, especially when combined with additional metrics like the CFE, which
this study introduces.

The effectiveness of SonarQube in analyzing software quality can be compared with other GIT
analysis tools and methodologies. Studies, such as [4], have explored methods for detecting similar repositories
on GitHub, providing insights into common quality issues and best practices in managing repository histories.
Additionally, resources like the Public Git Archive, as discussed in [9], enable large-scale analysis of code
changes and their impact on software quality, offering a valuable dataset for researchers. By comparing these
tools and datasets, we can establish the strengths and limitations of various approaches to GIT repository
analysis. SonarQube's comprehensive metric-based approach, combined with the new Consecutive File Edit
(CFE) metric introduced in this research, presents a promising avenue for investigating the link between file
editing frequency and software quality.

The CFE metric, which tracks the frequency of edits to the same files across consecutive commits,
has significant implications for various software complexity metrics. For example, Cyclomatic Complexity
often increases with higher CFE, as repeated edits introduce new decision points, loops, and conditionals
without refactoring the existing structure. This increase in complexity makes the codebase more challenging
to test comprehensively and raises the likelihood of introducing bugs. Cyclomatic Complexity can be calculated
using the formula:

Cyclomatic Complexity = E - N + 2P ¢))
where E is the number of edges in the control flow graph, N is the number of nodes, and P is the number of
connected components.

Similarly, Cognitive Complexity tends to rise with high CFE because frequent modifications,
especially by different developers, can create convoluted logic that is difficult to follow. This makes the code
harder to understand and maintain over time, leading to a decline in overall code quality. Cognitive Complexity
does not have a straightforward mathematical formula but is calculated by SonarQube based on the nesting and
flow of the code, penalizing deep nesting and complex flow structures more heavily.

Frequent consecutive edits without proper refactoring can also lead to the accumulation of Code
Smells and an increase in Technical Debt. Code smells, such as long methods or large classes, contribute to
technical debt, raising the future cost of maintaining the codebase and complicating the development process.
Technical Debt is often expressed in terms of the time and resources required to refactor the codebase to
eliminate these issues.

Furthermore, CFE generally results in an increase in Lines of Code (LOC), as more lines are added
with each edit, contributing to a bloated codebase. This is often accompanied by a rise in Halstead Complexity,
which measures the difficulty of understanding the code based on the number of operators and operands.
Halstead Complexity can be calculated using the following formulas:

Halstead Length = ny +n, 2)
Halstead Volume = N *log,(n,; + n,) 3)

where n; is the number of distinct operators, and n, is the number of distinct operands.

Finally, CFE can negatively impact Object-Oriented Metrics such as Weighted Methods per Class
(WMC) and Coupling Between Objects (CBO). Frequent additions of new methods or tighter coupling between
objects reduce the modularity and reusability of the code, making it harder to maintain and extend. WMC is
typically calculated by summing the cyclomatic complexity of all methods in a class:

n
WMC = Z >)
i=1

where C; is the cyclomatic complexity of method i.

By understanding these relationships, we can better appreciate the impact of frequent file edits on
software quality and the importance of maintaining a balance between necessary changes and code stability.

The impact of consecutive file edits on software complexity metrics underscores the need for effective
code management and regular refactoring. As consecutive edits increase, they tend to elevate both the structural
and cognitive complexity of the codebase, leading to a higher accumulation of code smells and technical debt.
These changes make the software harder to maintain, more error-prone, and more expensive to modify over
time. Understanding these impacts allows developers and project managers to identify potential risks early and
take proactive steps to ensure the long-term health and maintainability of the software.

298 Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

TexHIvHI HaQyKU

ISSN 2307-5732

Table 1

Impact of Consecutive File Edits on Software Quality MetricsConclusion

understand the code.

logic and deeper nesting,
making the code harder to
understand.

Metric Definition Potential Impact of High Analysis
CFE

Cyclomatic Measures the number | Increase: High CFE may | Frequent edits may complicate
Complexity of linearly independent | introduce more decision | the control flow, making the
paths through the code. | points (e.g., loops, | code harder to test and

conditionals) as developers | increasing the risk of introducing

add new logic. bugs((1) The Research on

Sof...).

Cognitive Assesses the mental | Increase: High CFE can | Repeated changes by different
Complexity effort required to [lead to more convoluted | developers can result in less

readable code, with complex
logic that is difficult to follow
((1) The Research on Sof...).

Code Smells

Indicates potential
issues in the code that
may not be bugs but
could lead to problems
later.

Increase: High CFE can
accumulate code smells
such as long methods or
large classes.

Frequent edits without
refactoring can result in an
accumulation of technical debt
and code smells, reducing
maintainability((1) The
Research on Sof...).

Technical Debt

Represents the cost of
rework caused by
choosing a suboptimal
solution in the short
term.

Increase: High CFE
suggests that quick fixes
may have been applied
repeatedly, increasing
technical debt.

Frequent file edits may indicate
that developers are applying
patches or workarounds, leading
to a growing need for refactoring
((1) The Research on Sof...).

Lines of Code
(LOC)

Counts the number of
lines in the codebase.

Increase: High CFE can
lead to increased LOC as
new features or fixes are

Repeated edits often increase the
size of the codebase, but without
necessarily improving its quality

added without optimizing | or maintainability((6) The

existing code. Correlation amo...).
Test Coverage | Measures the | Potential Decrease: High | If frequent edits are not
percentage of code | CFE might result in | accompanied by corresponding

covered by automated | untested code if changes | updates in test cases, test
tests. are not accompanied by | coverage may decline,
updated tests. increasing the risk of undetected
bugs((6) The Correlation
amo...).

Halstead Quantifies complexity | Increase: High CFE can | Frequent edits may introduce
Complexity based on the number of | lead to more complex | new operations and operands,
operators and operands | expressions as additional | increasing the overall
in the code. logic is added. complexity and making the code
harder to understand((6) The

Correlation amo...).
C&K Metrics Set of metrics specific | Increase: High CFE may | Consecutive edits might

to object-oriented | lead to higher WMC and | introduce more methods in a
design, such as | CBO if new methods are | class or increase dependencies
Weighted Methods per | added or existing methods | between classes, complicating
Class (WMC) and | become more | the design((1) The Research on
Coupling Between | interconnected. Sof...).

Objects (CBO).

Methodology for Calculating Consecutive File Edits (CFE) and Integrating with SonarQube Metrics

Calculating the Consecutive File Edit (CFE) Metric
The Consecutive File Edit (CFE) metric is designed to quantify the frequency with which specific

files are modified within a software project. The rationale behind this metric is that files undergoing frequent
changes may be more susceptible to issues related to code stability, maintainability, or design flaws. Unlike
traditional metrics that consider the impact of changes, the CFE metric focuses solely on the frequency of edits,
providing a distinct perspective on how often the same parts of the codebase are revisited.

CFE Calculation Algorithm

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 299

Technical sciences ISSN 2307-5732

The CFE value for a given file increases each time the file is modified in a commit, regardless of the
magnitude or nature of the change. This method allows us to track how often a file is edited without considering
the specific changes made. The cumulative CFE for a commit is calculated by summing the CFE values of all
the files that were edited in that commit.

The algorithm works as follows:

1) Initialization: We maintain a dictionary to track the CFE value for each file. Initially, all files have

a CFE value of zero.

2) Commit Iteration: We iterate through all commits in the repository, processing them in
chronological order from the oldest to the most recent.

3) File Processing: For each commit, we identify the files that were modified. If a file has been
modified in previous commits, its CFE value is incremented by 1. If the file is being edited for the
first time, its CFE value is set to 1.

4) Cumulative CFE Calculation: The CFE for the current commit is calculated by summing the CFE
values of all files modified in that commit. This cumulative value provides an overall measure of
how frequently the files in that commit have been edited over the project's history.

5) Result Storage: The calculated CFE values for each commit are stored for further analysis and
comparison with other metrics.

Pseudocode for CFE Calculation

Below is the pseudocode that describes the algorithm for calculating the CFE metric:

Explanation of the Algorithm

e File Edit Tracking: The dictionary file edit count tracks the CFE value for each file in the
repository. This value increments each time the file is modified in a new commit, regardless of the
extent or type of modification.

e Commit Processing: By iterating through all commits in reverse chronological order, the algorithm
ensures that each file's edit history is considered accurately. This approach allows us to track how
the CFE value evolves as the project progresses.

e Cumulative CFE: The sum of all file CFE values in a commit provides a cumulative measure for
that commit. A higher cumulative CFE indicates that the commit involves files that have been
frequently edited, potentially flagging areas of the codebase that require closer scrutiny.

This algorithm provides a straightforward yet effective method for calculating the CFE metric,
allowing for subsequent comparison with traditional software complexity metrics. The next section will discuss
how this CFE metric is integrated with SonarQube to analyze and compare its correlation with other code
quality indicators.

Integrating CFE Calculation with SonarQube Metrics

In this section, we detail the process of integrating the Consecutive File Edit (CFE) metric calculation
with the static code analysis capabilities of SonarQube. This integration allows us to compare the CFE metric
directly with traditional code quality metrics such as cyclomatic complexity, cognitive complexity, and code
smells, providing a comprehensive analysis of how frequently edited files correlate with these metrics.

Overview of the Integration Process

The integration process involves the following key components:

1) Program: The custom-built program is responsible for traversing the commits in a GIT branch,
extracting the relevant code, and calculating the CFE for each commit.

2) SonarScanner: This tool acts as a bridge between the program and SonarQube. The program sends
the code from each commit to SonarScanner, which then forwards it to SonarQube for analysis.

3) SonarQube: SonarQube performs static code analysis on the submitted code, calculating various
metrics including complexity, code smells, and others. After the analysis, the program retrieves
these metrics for comparison with the CFE values.

Workflow of the program

The workflow of the program can be described in the following steps:

1) Traversing GIT Commits:

The process begins with the program traversing through each commit in the specified GIT branch. For
each commit, the program retrieves the state of the code as it existed at that point in time.

2) Sending Code to SonarScanner:

Once the code for a commit is retrieved, the program sends it to SonarScanner. SonarScanner is
configured to analyze the code using SonarQube's static analysis capabilities.

3) Static Code Analysis by SonarQube:

SonarScanner passes the code to SonarQube, where it undergoes static analysis. SonarQube calculates
various code quality metrics, such as cyclomatic complexity, cognitive complexity, code smells, and others.
These metrics provide insight into the maintainability, reliability, and overall quality of the code.

4) Retrieving Metrics:

300 Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

Texui

YHI HayKu

ISSN 2307-5732

After SonarQube completes the analysis, the program sends a request to SonarQube's API to retrieve
the calculated metrics for the commit. These metrics are then stored alongside the CFE value calculated by the

program.

5) Storing CFE and Metrics:
The final step involves aggregating and storing the retrieved metrics with the CFE values. This allows
for detailed analysis and comparison of how frequent file edits relate to various aspects of code quality.

E

Host

Sonar cloud server

Program

Downloads
and

SonarScanner

Picks cammit
1o analyse

Files to be analysed

Metric Analyser

GIT Repository

uploads

Check and/or writes to

Analysis
cache

Comparative Analysis of CFE Results Across Various GIT Repositories

Puc. 1. Integration Scheme for Calculating CFE with SonarQube

In this chapter, we analyze the Consecutive File Edit (CFE) metric and its correlation with various
software quality metrics, including complexity, code smells, violations, and bugs, across multiple open-source
GIT repositories. These repositories, characterized by contributions from multiple developers, provide a rich
dataset to understand how frequent file edits impact code quality.

CFE Distribution and Correlation with Complexity

The first step in our analysis is to examine the distribution of CFE values across different commits
and investigate their correlation with the complexity metrics provided by SonarQube.

"1 =P8 Worker Panei - GFE [Javascript Aigorithms - GFE [__] MM

GFE Normakzed)

[wavascrit Aigorithms - Complesity MM it

Page Spy Wab - CFE PostCS
Page Spy Web - Complexity Por

"1 &5PB Workar Panel - Complaxity

xt - Complaity

o 2,500

2,000

1,000 2

Puc. 2 Distribution of CFE Values and Correlation with Complexity Metric

Observation: Higher CFE values tend to correlate with increased complexity in many of the
repositories. This suggests that files that are frequently edited tend to become more complex over time,
potentially making the codebase harder to understand and maintain.

CFE and Code Smells

Next, we investigate how the CFE metric relates to the occurrence of code smells, which are indicative

of potential design flaws or areas in need of refactoring.

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

301

Technical sciences ISSN 2307-5732

[78 Worker Panel - CFE [Javascript Algorithms - CFE. [MM Interview Analysis - CFE Page Sy Web - CFE PosCSS C88Next - CFE [C] BPB Worker Pansi - Gode Smefla

] Javascript Aigorithms - Code Smels ["] M intarview Anaiyss - Code Smells Paga Spy Wb - Gode Smalls PosiCES C8Shext - Coda Smals
100

a
b
fw
&
5 :
a0 w0 &
a0 m
20 20
i
0 0

¥ V
R L R N o I P N S N S S N g O G R A O g

Puc. 3 Relationship Between CFE and the Number of Code Smells

Observation: Repositories with high CFE values show a higher number of code smells, indicating that
frequent modifications without adequate refactoring can lead to the accumulation of technical debt.

CFE and Violations

We also examine the relationship between CFE values and the number of violations detected by
SonarQube. These violations represent rule breaches that could affect the maintainability and reliability of the

software.

1 &PB Warkor Panel - CFe [Javascrpt Al
[Javascript Agorithms

GFE "] MM Interview Anaiysis - CFE Page Spy Web - CFE PoSiCSS CSSMaxt - CFE "] BPB Workar Pane - Violations
s [MM Interview Ansiysis - Vioiatons Page Spy Wb - Viclatians PoSICSS CSSNex - Violations

100

¥

CFE Mormalzad)
(psaI/EuLON) SUOTEGIA

FESTFFPT T PFFFP TP F LSS EFSL

Puc. 4 Correlation Between CFE and the Number of Violations

Observation: A positive correlation between CFE and violations suggests that frequently edited files
are more prone to rule violations, potentially due to rushed or inconsistent changes by different contributors.

CFE and Bugs

Finally, we analyze how frequently edited files relate to the number of bugs detected, which directly
impacts the reliability of the software.

1 578 Worker Panai - GFE [Javasorpt Algorithms - GFE. "] MM Intarview Analysis - GFE Page Spy Vish - GFE PasiCs C5SNaxt - CFE] 8PS Worker Panel - Bugs Javaseript Aigorihms - Bugs

MM intarviaw Analysis - Bugs Pags Spy Wab - Bugs PostCSS GSSNaxt - Bugs

100

00

%0

CFE (Mormalized)

NN N NS P
@ E £ & J FLPETFSFIFSFTITFTT LSS

Puc. 5 Impact of CFE on the Number of Bugs

302 Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

TexHiuHi HayKu ISSN 2307-5732

Observation: The data shows that higher CFE values often coincide with an increased number of bugs,
underscoring the risk of introducing defects when files are frequently modified without sufficient testing or
review.

Comparative Summary

The comparative analysis across these open-source repositories reveals consistent patterns that
highlight the risks associated with frequent file edits. High CFE values are often accompanied by increased
complexity, more code smells, higher violations, and a greater number of bugs. These findings underscore the
importance of monitoring and managing CFE as part of a broader software quality assurance strategy. By
identifying and addressing frequently edited files early, development teams can mitigate the accumulation of
technical debt and maintain a more robust and maintainable codebase.

References

1. Rosenberg, L. H.,, & Hyatt, L. E. (1997). Software quality metrics for object-oriented
environments. Crosstalk Journal, 10(4), 1-6.

2. Kafura, D., & Henry, S. (1981). Software quality metrics based on interconnectivity. Journal of
Systems and Software, 2(2), 121-131.

3. Pargaonkar, S. (2021). Quality and metrics in software quality engineering. Journal of Science &
Technology, 2(1), 62—69.

4. Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., & Ducasse, S. (2013). Software
quality metrics aggregation in industry. Journal of Sofiware: Evolution and Process, 25(10), 1117-1135.
https://doi.org/10.1002/smr. 1562

5. Dalla Palma, S., Di Nucci, D., Palomba, F., & Tamburri, D. A. (2020). Toward a catalog of
software quality metrics for infrastructure code. Journal of Systems and Sofiware, 170, 110726.
https://doi.org/10.1016/1.jss.2020.110726

6. Rawat, M. S., Mittal, A., & Dubey, S. K. (2012). Survey on impact of software metrics on software
quality. International Journal of Advanced Computer Science and Applications (IJACSA), 3(1).
https://doi.org/10.14569/IJACSA.2012.030111

7. Fenton, N. (1994). Software measurement: A necessary scientific basis. /[EEE Transactions on
Software Engineering, 20(3), 199-206. https://doi.org/10.1109/32.295895

8. Gaffney, J. E., Jr. (1981). Metrics in software quality assurance. In Proceedings of the ACM '81
Conference (pp. 126-130). ACM.

9. Oliveira, M. F., Redin, R. M., Carro, L., da Cunha Lamb, L., & Wagner, F. R. (2008). Software
quality metrics and their impact on embedded software. In 5th International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software (pp- 68—77). IEEE.
https://doi.org/10.1109/MOMPES.2008.4479903

10. Jiang, Y., Cuki, B., Menzies, T., & Bartlow, N. (2008). Comparing design and code metrics for
software quality prediction. In Proceedings of the 4th International Workshop on Predictor Models in Software
Engineering (pp. 11-18). https://doi.org/10.1145/1370788.1370807

11. Schneidewind, N. F. (1997). Software metrics model for quality control. In Proceedings of the
Fourth International Software Metrics Symposium (pp- 127-136). IEEE.
https://doi.org/10.1109/METRIC.1997.637177

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 303

https://doi.org/10.1002/smr.1562
https://doi.org/10.1016/j.jss.2020.110726
https://doi.org/10.14569/IJACSA.2012.030111
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/MOMPES.2008.4479903
https://doi.org/10.1145/1370788.1370807
https://doi.org/10.1109/METRIC.1997.637177

