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EVALUATION AND COMPARISON OF TEXT-TO-AUDIO GENERATION 

MODELS FOR MEDIA APPLICATIONS 
 

In this research paper we aim to evaluate and compare the performance of several state-of-the-art text-to-audio 

generation models in producing audio effects for media applications. To achieve this, we created a new evaluation 

framework, including curated dataset of text-audio pairs that can be used in media products, and a comprehensive set of 

metrics, namely: Kullback–Leibler divergence between classification labels of true and generated audio, the Contrastive 

Language–Audio Pretraining (CLAP) embedding similarity, text-caption cosine similarity, and Fréchet Audio Distance 

(FAD) between expected and generated audios. Our results demonstrate that Stable Audio Open exhibited the highest 

performance across most metrics, indicating superior audio quality and semantic alignment. This comprehensive study not 

only quantifies the performance of these models but also provides a detailed analysis of their strengths and weaknesses in 

a real-world media production context. The findings reveal the intricate relationship between model architecture, training 

strategies, and the resulting audio quality. We also found that increasing inference steps generally improved semantic 

alignment but with diminishing returns beyond 100 steps. Our results also include investigation into the trade-off between 

models’ sizes, training strategies and performance. Scientifically, this study provides a new solid benchmark for evaluating 

text-to-audio generation models and contributes to a deeper understanding of diffusion-based audio synthesis. Practically, 

our findings offer clear guidance for media creators and developers in selecting appropriate models for specific 

applications, facilitating the integration of advanced audio generation into media production. Furthermore, the curated 

dataset and defined metrics serve as valuable resources for future research in this field. 

Keywords: diffusion models, audio generation, reverse diffusion, text-to-audio generation, generative AI 

evaluation. 
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ОЦІНКА ТА ПОРІВНЯННЯ ТЕКСТ-ДО-АУДІО ГЕНЕРАТИВНИХ  

МОДЕЛЕЙ ДЛЯ ЗАСТОСУВАННЯ У МЕДІА 

 
У цій роботі запропоновано оцінення та порівняння якість кількох найсучасніших моделей генерації аудіо з тексту у 

створенні звукових ефектів для застосування у медіа продуктах. Для цього у роботі пропонується нова система оцінювання, 

що включає відібраний набір даних з пар текст-аудіо, які можна використовувати в медіа-продуктах, та комплексний набір з 
чотирьох метрик. Це комплексне дослідження не лише кількісно оцінює продуктивність цих моделей, але й надає детальний 

аналіз їхніх сильних та слабких сторін у контексті реального застосування у медіа продуктах. Висновки розкривають 

комплексний зв'язок між архітектурою моделі, стратегіями навчання та отриманою якістю аудіо. Результати також 
включають дослідження компромісу між розмірами моделей, стратегіями навчання та якістю генерованого аудіо. З наукової 

точки зору, це дослідження надає новий надійний бенчмарк для оцінювання моделей генерації аудіо з тексту та сприяє глибшому 

розумінню синтезу аудіо на основі дифузії. З практичної точки зору, висновки у роботі пропонують визначені рекомендації для 
медіа-творців та розробників у виборі відповідних моделей для конкретних застосунків, сприяючи інтеграції передової генерації 

аудіо в медіа продукти. Крім того, відібраний набір даних та визначені метрики  слугуватимуть цінними ресурсами для 

майбутніх досліджень у цій галузі..  
Ключові слова дифузійні моделі, генерація аудіо, зворотна дифузія, генерація тексту-в-аудіо, оцінка генеративного ШІ. 
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Introduction 
The creation of audio effects through advanced generative neural models is a game-changer for 

improving media products in various fields, such as music production, virtual assistants, and immersive 

environments. These generative AI models are able to produce dynamic and realistic audio, going beyond the 

limitations of traditional methods by learning intricate patterns in audio data. This capability enables the 

creation of high-quality sounds and music, generating novel soundscapes and simulating acoustic 

environments. 
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Our paper focuses on the evaluation and comparison of several state-of-the-art text-3-audio generative 

models for the audio effect generation task. To achieve this, we have created an evaluation dataset of text-audio 

pairs relevant to media applications. To do this, we’ve put together an evaluation dataset filled with text-audio 

pairs that are relevant to media applications. We then defined four key performance metrics to assess the quality 

of the generated audio, including CLAP embedding similarity for semantic alignment, text-caption similarity 

for semantic consistency, FAD (based on VGGish embeddings) for audio quality and perceptual similarity and 

KL divergence (based on PaSST model) for semantic content similarity. 

This research helps deepen the understanding of current audio generation techniques, paving the way 

for improvements in sound quality, efficiency, and control, ultimately enhancing how AI integrates into 

creative media production. 

Analysis of related works on conditional text-to-audio generative models 
The use of diffusion models has led to notable progress in the creation of audio from textual 

descriptions [1]. These models are types of neural networks [2] where the stochastic process of progressively 

turning data into noise is reversed. Denoising Diffusion Probabilistic Models (DDPMs) [3], which iteratively 

eliminate noise to restore the original data distribution, are essential to this strategy. Efficiency of classical 

diffusion models can be improved by Latent Diffusion Models (LDMs) by leveraging reverse diffusion process 

in the smaller latent space instead of the original one [6]. Other similar techniques include Noise Conditional 

Score Networks (NCSNs)[4], which improve denoising by conditioning on noise levels and estimate the 

gradient of the data distribution, while Score-based Generative Models (SGMs)[5] are continuous-time 

framework for simulating noise addition and reversal is offered by stochastic differential equations (SDEs). 

Additionally, Variational Diffusion Models (VDMs)[6] incorporate variational inference for optimization. The 

comparison of the strong and weak points of the listed types of generative models’ architectures that can be 

used for audio generation are put together in Table 1. 

 

Table 1 

Generative models’ architectures comparison 

Model type Strong points or improvements Weak points 

Noise Conditional Score 

Networks [4] 

A clear and well-defined training 

objective based on score matching, 

which allows for principled model 

comparisons. 

Sampling using Langevin 

dynamics can be computationally 

expensive, and model's 

performance is heavily reliant on 

the accuracy of the score 

estimation. 

Denoising Diffusion 

Probabilistic Models [3] 

Iteratively refine audio by 

removing noise, leading to high 

quality, plus method has a strong 

theoretical foundation. 

Slow sampling speed, high 

computational cost and can be 

memory intensive for long audios 

or big images. 

Score-based Generative Models 

[5] 

Can handle complex data 

distributions, plus provide a 

unified framework for various 

diffusion processes. 

Requires accurate score 

estimation. Can be unstable 

during training and can be 

computationally demanding. 

Latent Diffusion Models [7] Significantly improve sampling 

speed and reduce computational 

cost, as a result enables high-

resolution generation with limited 

resources. 

Potential loss of fine-grained 

details, plus require careful 

selection of the latent space. 

Variational Diffusion Models [6] Combine diffusion models with 

variational inference. Provide a 

probabilistic framework for 

optimization. 

Increase complexity due to 

variational inference, also due to 

approximation may affect sample 

quality. 

 

These diffusion-based techniques have found practical application in conditional text2audio 

generation, exemplified by models like Stable Audio Open [8], an open-source model optimized for generating 

short audio samples, sound effects, and production elements. It employs an autoencoder for waveform 

compression, T5-based text embeddings for conditioning, and a transformer-based diffusion model (DiT) [10] 

in the latent space. Trained on datasets like Freesound[8] and the Free Music Archive, it produces high-quality 

stereo audio at 44.1kHz. 

Another popular model is AudioLDM [11, 12], inspired by Stable Diffusion. It’s a latent diffusion 

model that leverages Contrastive Language–Audio Pretraining (CLAP) [13, 14] latents to generate realistic 

audio samples from text prompts. It demonstrates the ability to synthesize a wide range of audio content, 

including sound effects, speech, and music. We evaluated both small and large variants of AudioLDM versions 

1[11] and 2 [12]. 

MusicLDM [15], built on ideas from both Stable Diffusion and AudioLDM, created specifically for 
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music generation. It utilizes beat-synchronous data augmentation strategies in both the time and latent domains, 

enhancing the diversity and stylistic fidelity of generated music. The model was trained with 466 hours of 

music data. 

Evaluating the performance of these audio generation models requires usage of robust metrics, 

covering different aspects of generated audio and its similarity with input prompt. Common approaches include 

analyzing the semantic alignment between generated audio and input text, as well as assessing audio quality 

and diversity. To quantify semantic alignment, metrics like the cosine similarity between CLAP embeddings 

[13] of the input prompt and generated audio are employed. CLAP, based on the similar idea of CLIP [16], 

provides a common embedding space for texts and audios, enabling their direct comparison via vector metrics. 

Additionally, the cosine similarity between text prompt embeddings and captions generated for the audio offers 

another perspective on semantic consistency. 

To assess audio quality and perceptual similarity other popular techniques are widely used, starting 

with the Fréchet Audio Distance (FAD) [17]. FAD, based on VGGish [18] embeddings, measures the distance 

between the distributions of real and generated audio features. Furthermore, the Kullback-Leibler (KL) 

divergence between label distributions extracted from pre-trained audio classifiers, such as Patch-based Audio 

Spectrogram Transformer (PaSST) [19], can evaluate the similarity of semantic content between generated and 

real audio [20]. These metrics collectively provide a comprehensive evaluation framework for text-to-audio 

generation models. 

Formulation of the purpose of the research 
The main purpose of the research is to evaluate and compare the performance of SOTA audio 

GenAI models, concretely focusing on their ability to produce high-quality audio effects from input textual 

prompts for media product applications. To achieve this in the work we set up a solid evaluation system that 

includes a chosen eval-set of task-relevant text-audio pairs and metrics to measure corresponding performance. 

The created framework is designed to assess six distinct audio generation models, providing a comparative 

analysis of their strengths and weaknesses, based on the received values. Generally, this research contributes 

to a deeper understanding of current audio generation models. 

 

Main materials 
As it was already mentioned in the previous section, the evaluation framework consists of dataset and 

a set of metrics. The dataset was constructed using publicly accessible audio files, ensuring compliance with 

copyright regulations through the selection of open-licensed materials. We gathered over a hundred audio files, 

each accompanied by descriptive prompts. These prompts served as the ground truth for assessing the semantic 

accuracy of the generated audio. To give the overall impression of the collected dataset the distributions of the 

audio length (in seconds) and the distribution of the number unique words in prompt text are visualized on Fig. 1. 

 
Fig. 1. Distributions of audio duration and prompt text length (number of unique words) 

 

For evaluating the models, we propose using a set of four metrics. Firstly, we used the Kullback-Leibler 

(KL) divergence between label distributions [20] (for expected and generated audios) extracted from PaSST audio 

classifier [19]. This metric allowed us to quantify the semantic accuracy of the generated audio by comparing the 

predicted label distributions against those of real audio samples, revealing how well the generated audio aligned 

with expected sound categories. The lower the metric value – the better model performs.  

Secondly, we utilized the similarity between CLAP embeddings of the input text prompt and the 

generated audio. This is the most straight-forward metric in the set. CLAP, designed to learn joint 

representations of audio and text. We used a pre-trained by Microsoft version [13, 14], providing a cross-modal 

evaluation of semantic alignment. By default, the CLAP similarity is calculated as a dot-product of the 

corresponding embeddings. The higher the value – the better the model. 

Thirdly, we measured the cosine similarity between the embeddings of the input textual prompt and 

the caption generated for the audio. This indirect measure of semantic consistency between the intended audio 

description and the perceived content was calculated using the GIST-Embedding-v0 model [21]. To receive a 

textual description for the generated audio we used a conditional caption generation processed supported by 
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CLAP. For each generated audio sample, we have decoded a corresponding description which was compared 

with an actual input prompt using cosine similarity, given by Equation (1). 

cos-sim(𝒑, 𝒄) =  
𝒑 ∙ 𝒄

‖𝒑‖‖𝒄‖
 , (1) 

where vectors p and c are the embedding vectors extracted for an input prompt and generated caption 

correspondingly. The higher the value – the better the model. For the referencing to the metric the name PCES 

will be used (from prompt-caption embedding similarity). 

Finally, we also propose to use the Fréchet Audio Distance (FAD) [17] with VGGish [18] embeddings 

to assess the quality and realism of the generated audio. Metric, which measures the distance between the 

distributions of real and generated audio features, captured both the quality of individual samples and the 

diversity of the generated set. For the generated audio, we calculated FAD for each batch and then averaged 

the results over three runs. VGGish embeddings were used as they were preferred by the authors of the original 

FAD paper [17]. 

Having two sets of embeddings for a real audios Er and generated Eg, firstly there is a need to estimate 

two multivariate Gaussian distribution based on the embedding sets: 𝑁(𝛍r, 𝚺r), and 𝑁(𝛍g, 𝚺g), based on which 

the FAD is defined by Equation (2) [17]. 

FAD (𝑁(𝛍r, 𝚺r), 𝑁(𝛍g, 𝚺g)) =  ‖𝛍r  −  𝛍g‖
2

+  Tr (𝚺r + 𝚺g  −  2√𝚺r𝚺g), (2) 

where Tr is a trace of a matrix.  

Collectively, these metrics provided a comprehensive framework for evaluating the semantic 

accuracy, cross-modal alignment, and perceptual quality of the generated audio. 

For the evaluation process six models were selected, namely: 

• AudioLDM [11, 12] version 1 and 2 (small and large versions), corresponding model 

checkpoints are: 

 cvssp/audioldm-l-full; 

 cvssp/audioldm-s-full-v2; 

 cvssp/audioldm2; 

 cvssp/audioldm2-large; 

• MusicLDM [15], checkpoint: ucsd-reach/musicldm; 

• and Stable Audio Open [8] version 1.0, checkpoint: stabilityai/stable-audio-open-1.0 

For each of the models we utilized a curated dataset, while also exploring the impact of varying the 

number of reverse diffusion process steps (50, 100, and 200). Each experiment was run three times (generating 

three versions of the audio for a given input description) and averaging the resulting metrics. The aggregated 

metric values are presented in Table 1, with the best values per column highlighted in italics. Visualizations of 

these metrics are shown in Figure 1, with arrows indicating whether higher or lower values are preferred. 

 

Table 2 

Resulting table 

Model Steps KL div ↓ CLAP sim. ↑ PCES ↑ FAD ↓ 

cvssp/audioldm-l-full 50 3.777663 3.255752 0.632183 5.831618 

cvssp/audioldm-l-full 100 3.738220 3.296518 0.634056 5.853212 

cvssp/audioldm-l-full 200 3.730167 3.302370 0.633000 5.910927 

cvssp/audioldm-s-full-v2 50 3.852858 2.946991 0.634231 6.869589 

cvssp/audioldm-s-full-v2 100 3.752894 3.022142 0.634018 6.608230 

cvssp/audioldm-s-full-v2 200 3.863988 3.029306 0.632912 6.955686 

cvssp/audioldm2 50 4.063242 3.025873 0.639320 5.488616 

cvssp/audioldm2 100 4.056284 3.065535 0.639993 5.402819 

cvssp/audioldm2 200 4.090465 3.099258 0.639077 5.475049 

cvssp/audioldm2-large 50 4.360254 2.460987 0.636093 5.434517 

cvssp/audioldm2-large 100 4.356609 2.465132 0.636733 5.396087 

cvssp/audioldm2-large 200 4.292400 2.641249 0.637267 5.474047 

stabilityai/stable-audio-open-1.0 50 2.458611 6.364019 0.675837 3.697069 

stabilityai/stable-audio-open-1.0 100 2.498052 6.383319 0.674974 3.730893 

stabilityai/stable-audio-open-1.0 200 2.493545 6.421551 0.674869 3.656341 

ucsd-reach/musicldm 50 5.077684 1.667891 0.623549 9.816323 

ucsd-reach/musicldm 100 5.071681 1.697881 0.623988 9.900907 

ucsd-reach/musicldm 200 5.079560 1.732906 0.623814 10.001324 
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Fig. 2. Comparison matrix by metric per inference steps per model 

 

Our analysis revealed several key observations. Firstly, increasing the number of inference steps 

generally led to slight improvements in CLAP similarity, suggesting a potential enhancement in semantic 

alignment with more refined generation. However, the effect on other metrics was less consistent, indicating a 

complex interplay between inference steps and performance across different evaluation metrics. CLAP 

similarity also exhibited the widest range of variations, pointing to its sensitivity to the model and parameter 

changes. 

KL divergence showed significant variability w.r.t.  models but mostly remained stable within each 

model across different inference steps. This suggests that the inherent semantic categorization capabilities of 

each model were largely consistent. Unfortunately, the caption-prompt embeddings cosine similarity remained 

relatively uniform across all models and inference steps, typically falling within the 0.6-0.7 range. This 

consistency may indicate limitations in the GIST-Embedding-v0 model's sensitivity to changes in audio 

descriptions or potentially points to over-simplified or generic generated captions. Further investigation is 

needed to clarify this observation. 

FAD also varied substantially between models, demonstrating consistency within each model across 

different inference steps. This suggests that the overall audio quality and realism, as captured by FAD, were 

inherent to each model's architecture and training. 

Notably, models with lower KL divergence tended to have higher CLAP similarity, possibly pointing 

to a correlation between semantic accuracy and cross-modal alignment. For most models, increasing inference 

steps beyond 100 yielded diminishing returns or even slight degradation in some metrics, particularly FAD, 

indicating a trade-off between refinement and potential overfitting or artifact generation. 

Additionally, to compare the models not only from metrics perspective, but also from size-metrics 

point of view, we created the visual representation of the dependencies between models’ sizes and two selected 

metrics: CLAP and FAD (given by the fact that they tend to have a correlation), presented on Fig. 3. Number 

of steps, used to create Fig. 3, was chosen to be a middle value – a 100. 

Inspecting results from Fig. 2 and Fig. 3 we can extract insight with respect to the model, rather than 

generation parameters.  As expected, Stable Audio Open demonstrated strong overall performance across most 

metrics, confirming its efficacy in generating high-quality audio from text prompts. AudioLDM-large exhibited 

a surprisingly high KL divergence, despite its larger architecture, while showing noticeable improvements in 

CLAP similarity at 200 inference steps. MusicLDM generally performed poorly across most metrics, likely 

due to its specialization in music generation rather than general audio effects, validating the suitability of our 

metrics for evaluating text-to-audio tasks. 

Comparing the two versions of AudioLDM, the larger model consistently outperformed the smaller 

model in CLAP similarity and FAD, indicating enhanced semantic alignment and audio quality. However, KL 

divergence and caption-prompt cosine similarity remained similar, suggesting that these metrics were less 

sensitive to model size variations. 
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Fig. 3. Models’ size by metrics values 

 

Conclusions and further work 

Our research aimed to evaluate and compare the performance of six state-of-the-art text-to-audio 

generation models using a curated dataset and a comprehensive set of metrics. 

We used a selected dataset and a wide range of measurements to do this. Our findings showed that 

Stable Audio Open had the best overall results. It did especially well in Fréchet Audio Distance (FAD) and 

CLAP similarity. These scores point to better sound quality and a closer match to the intended meaning. We 

also noticed that more inference steps led to better CLAP similarity, but this improvement slowed down after 

a while, and other scores, e.g., FAD, could get worse after increasing number of steps. Also, MusicLDM, while 

designed for music generation, performed poorly across most metrics. Looking at all the models side by side 

showed how the model structure and training data affect performance. 

Future work could aim to create custom audio generation models for specific uses possibly by fine-

tuning or coming up with new designs. Additionally, to increase the validity of evaluation framework there is 

a need to improve how the dataset is constructed, for instance, utilizing data augmentation and self-supervised 

learning. To make metrics more reliable and suitable for evaluating conditional generation of audio for media 

production.  
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