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OPTIMIZATION OF MEMORY USE BY IMPLEMENTATIONS OF  

THE BASIC CORDEGEN METHOD 

 
This paper is devoted to the task of generating text corpora “on demand” as input data for solving software 

engineering problems during the development of information systems for their processing. One of the methods that solves 

such a task is the basic CorDeGen method, however, as the analysis showed, practically none of the existing studies 

consider the issue of optimizing practical metrics of software implementations of this method, such as memory usage. Only 

a few papers propose pre-allocating memory for generated texts “with excess” to simplify and speed up the generation 

process by removing unnecessary checks and constant memory allocation. However, this approach, implemented as a fast 

heuristic formula, leads to increased memory usage in most cases. 

To solve this shortcoming, the paper proposes a formula for exactly estimating the length of each text by its 

ordinal index, depending on the input parameters of the basic CorDeGen method (the number of unique terms). This 

formula considers the set of terms that occur in a particular text, their length, the number of occurrences of each, as well 

as the length of separators between occurrences of the same term and between different terms. 

The experimental verification showed the effectiveness of using the proposed formula for exact text length 

estimation in terms of reducing memory consumption by the reference implementation of the basic CorDeGen method and 

its parallel modifications. The efficiency increases with the corpus size – from 3% for small (2500 unique terms) to 10% 

for very large corpora (312500 unique terms) compared to using the existing fast heuristic formula. At the same time, the 

degree of slowdown in the generation process decreases with increasing corpus size – from 17 to 6 percent at the same 

size. In practice, reducing memory consumption by increasing “net” generation time can be especially useful for systems 

with little or limited available memory to avoid memory overuse. 

Keywords: natural language processing; corpora generation; CorDeGen method; memory consumption 

optimization. 
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ОПТИМІЗАЦІЯ ВИКОРИСТАННЯ ПАМ’ЯТІ РЕАЛІЗАЦІЯМИ БАЗОВОГО МЕТОДУ CORDEGEN 

 
Ця робота присвячена задачі генерування корпусів текстів «на вимогу» в якості вхідних даних для вирішення задач 

програмної інженерії під час розроблення інформаційних систем для їх обробки. Одним із методів, що вирішує таку задачу, є 
базовий метод CorDeGen, проте, як показав проведений аналіз, практично жодна із існуючих робіт не розглядає питання 

оптимізації практичних метрик програмних реалізацій цього методу, таких як використання пам’яті. Лише деякі роботи 

пропонують попередньо виділяти пам’ять для генерованих текстів «з надлишком», щоб спростити та пришвидшити процес 

генерування за рахунок видалення зайвих перевірок та постійного виділення пам’яті. Але такий підхід, реалізований у вигляді 

швидкої евристичної формули, призводить до збільшеного використання пам’яті у більшості випадків. 
Для вирішення цього недоліку в роботі запропоновано формулу точної оцінки довжини кожного тексту за його 

порядковим індексом в залежності від вхідних параметрів базового методу CorDeGen (кількості унікальних термів). Ця 

формула враховує множину термів, що потрапляють до певного тексту, їх довжини, кількість входжень кожного, а також 

довжини роздільників між входженнями одного терму та між різними термами. 

Проведена експериментальна перевірка показала ефективність використання запропонованої формули точної оцінки 
довжини тексту у частині зменшення споживання пам’яті еталонною реалізацією базового методу CorDeGen та його 

паралельних модифікацій. Ефективність збільшується із розміром корпусу – від 3% для маленьких до 10% для надвеликих 

корпусів у порівнянні із використанням існуючої швидкої евристичної формули. При цьому ступінь уповільнення процесу 

генерування зменшується із збільшенням корпусу – від 17 до 6 відсотків на тих самих розмірах. На практиці, зменшення 

споживання пам’яті за рахунок збільшення «чистого» часу генерування може бути особливо корисним для систем із малою чи 
обмеженою кількістю доступної пам’яті, для уникнення її перевикористання. 

Ключові слова: оброблення природної мови; генерування корпусів; метод CorDeGen; оптимізація використання 

пам’яті. 
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Introduction 

In many professional fields today, information systems play a crucial role in solving different tasks 

related to natural language processing, in particular text analysis. However, from a software engineering 

perspective, developing and testing these systems presents unique challenges that are rarely encountered in the 

context of other types of information systems. One such challenge is the volume of input data for development 

or verification testing, as such systems are typically designed to process text corpora. Manual corpora 

preparation may be insufficient in terms of time and human effort if dozens or hundreds of corpora are needed, 

so only corpora generation “on the fly” can cover such requirements. 

The task of automatically generating text corpora, considering the peculiarities of their further use 

when solving software engineering problems, is still poorly researched, as are the methods of solving this task 

https://orcid.org/0000-0001-6971-3808
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in practice. Even fewer studies are devoted to the issue of software implementations of such methods and their 

practical optimizations, although due to them, different implementations of the same method can differ 

strikingly from each other in terms of metrics such as speed or memory usage. That is why this task is still 

relevant. 

Analysis of recent research 

Even though today’s literature presents a large number of studies devoted to the construction and/or 

generation of text corpora, mostly all of them focus only on the one-time execution of this process. In 

conclusion, the properties of the methods and algorithms used or proposed in such papers for the construction 

and/or generation of corpus make them hardly (partially or completely) applicable to solve software 

engineering problems. 

The majority of the studies are devoted to the construction/generation of corpora based on large 

natural data, which are transformed and processed in a certain way, e.g. [1–5]. This requirement significantly 

limits the possibility of their use in developing and/or testing information systems because the initial data must 

be stored, managed somewhere additionally, and should be retrieved on each usage. 

Other methods, like the ones presented in [6–8], do not require a large amount of input natural data to 

obtain a corpus, relatively small volume is enough for them. This simplifies the data storage, management, and 

retrieval, however, these methods have a low speed, so their use will significantly slow down the process of 

solving software engineering problems. 

Also, determining the structure and properties of the corpus generated by all these methods (presented 

in [1–8]) can be difficult. 

There are also methods for generating text corpora, which are specialized for solving software 

engineering problems during the creation of information systems. These methods consider the specific 

requirements imposed on them by use in this context. The CorDeGen method [9] is one of such methods and 

consists of the following abstract steps [9]: 

1. Input the parameter 𝑁𝑡𝑒𝑟𝑚𝑠 – the number of unique terms. 

2. Calculate the parameter 𝑁𝑑𝑜𝑐𝑠 (the number of texts in the corpus) using the function 𝑓( 𝑥). 

3. For each term 𝑖: 
a. Receive the string representation of the term. 

b. Calculate the vector 𝑡𝑓𝑖, containing the number of occurrences of the term in texts, using the 

calculation of the function 𝑔( 𝑥). 

c. Record to each text the string representation of the term based on the calculated number of 

occurrences from the vector 𝑡𝑓𝑖 . 

The description of the abstract CorDeGen method does not specify a specific method of receiving a 

string representation of a term and specific functions 𝑓(𝑥) or 𝑔(𝑥), only specific requirements that should be 

met by them. The basic CorDeGen is defined using the abstract steps and fixates the specific instances of these 

three components [9]. 

To date, several existing studies address or mention the issue of practical optimizations of the basic 

CorDeGen method and its implementations. The first such paper is [10], which considers the issue of 

accelerating the corpus generation process by parallelizing the main cycle of the method. This is possible 

because each iteration of the loop (calculating the representation and occurrences of the next term) is 

independent of each other, so they can be effectively executed in parallel. The only issue during parallelization 

is the synchronization of the recording of terms to texts, depending on the method of solving which, the naive 

parallel and parallel CorDeGen methods are proposed in [10]. 

The second is [9], which mentions the issue of memory allocation optimization for texts of the 

generated corpus. This paper shows that a direct practical implementation of the basic CorDeGen method 

requires constant manual or automatic memory allocation for texts as they are generated, which also slows 

down generation. Instead, [9] proposes pre-allocating memory for each text “with excess”, the amount of which 

is calculated using a fast heuristic formula (1) for the length of the text: 

 
𝑁𝑡𝑒𝑟𝑚𝑠𝑁𝑑𝑜𝑐𝑠

2

⌊
𝑁𝑑𝑜𝑐𝑠

5
⌋+2

. (1) 

However, the heuristic formula (1), although fast to calculate, has its drawbacks. Firstly, as the name 

of this formula implies, it is derived heuristically and there is no formal proof that the amount of memory 

calculated using it will be sufficient for any corpus size. This means that when using it, checks for the 

sufficiency of allocated memory are still required during generation. 

Secondly, this formula gives the same length estimate for all texts in the corpus, although in practice, 

in most cases, the lengths of the texts differ. For example, if 𝑁𝑡𝑒𝑟𝑚𝑠 is increased by 1 (but the value of 𝑁𝑑𝑜𝑐𝑠, 

which depends on it, remains the same), the length of all texts according to this formula will increase by the 

same amount, although the new term will be recorded only in a certain subset of these texts. In addition, the 

power dependence of the text length according to formula (1) looks like it will cause a large overestimation of 

the text length for large 𝑁𝑡𝑒𝑟𝑚𝑠. 

These shortcomings of the proposed stage of preliminary estimation of text length for memory 

allocation can be eliminated by replacing formula (1) with another one that will exactly estimate the length of 

each text from the generated corpus. 
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Formulation of the goals of the article 

The aim of this paper is to improve the efficiency of software implementations of the basic CorDeGen 

method according to the criterion of memory usage by adding to the generation process a preliminary stage of 

accurate estimation of the length of each text when allocating memory for them. 

To achieve this goal, the following tasks were set and solved during this study: 

• Derivation of the formula for the exact length of the text by its index for a certain value of 𝑁𝑡𝑒𝑟𝑚𝑠 

when using the basic CorDeGen method. 

• Adding the software implementation of preliminary estimation of text length during memory 

allocation based on the obtained formula to existing software implementing the basic CorDeGen 

method; verification of this implementation. 

• Experimental evaluation of the effect of using an exact prior estimation of text length during 

memory allocation, compared to using a fast heuristic formula. 

Presentation of the main material 

Text length formula 

It is obvious that the length of the text with index 𝑑 is obtained as the sum of the lengths of all 

occurrences of terms that fall into this text, as well as the lengths of the separators between these occurrences. 

If we consider the general case when the separator of occurrences of one term and the separator of different 

terms do not coincide, then we obtain formula (2), where 𝑆𝑑  is the set of term indices that fall into the text 𝑑, 

𝑜𝑠𝑙 is the length of the separator of occurrences of one term, 𝑡𝑠𝑙 is the length of the separator of different terms: 

 𝑑𝑙𝑑 = ∑ 𝑐𝑜𝑢𝑛𝑡( 𝑖, 𝑑) × (𝑙𝑒𝑛𝑔𝑡ℎ( 𝑖) + 𝑜𝑠𝑙) − 𝑜𝑠𝑙 + 𝑡𝑠𝑙𝑖∈𝑆𝑑
. (2) 

Formula (2) assumes that the separator of different terms is always added after each term, that is, the 

text ends with this separator. If a specific implementation of the basic CorDeGen method does not add the 

separator after the last term (i.e., the text ends with the last occurrence of the last term, not the separator), then 

formula (2) transforms into formula (3) in also an obvious way: 

 𝑑𝑙𝑑 = −𝑡𝑠𝑙 + ∑ 𝑐𝑜𝑢𝑛𝑡( 𝑖, 𝑑) × (𝑙𝑒𝑛𝑔𝑡ℎ( 𝑖) + 𝑜𝑠𝑙) − 𝑜𝑠𝑙 + 𝑡𝑠𝑙𝑖∈𝑆𝑑
. (3) 

Also, formula (2) or formula (3) changes in an obvious way if the lengths 𝑜𝑠𝑙 and 𝑡𝑠𝑙 coincide or 

these separators are the same. 

The basic CorDeGen method uses the index of the term 𝑖  written in hexadecimal as its string 

representation. Accordingly, the length of such a representation can be calculated by the formula: 

 length(𝑖) = ⌊𝑙𝑜𝑔16(𝑚𝑎𝑥( 𝑖, 1))⌋ + 1. (4) 

Considering that many programming languages may lack a built-in function for calculating a 

logarithm with an arbitrary base (in the case of formula (4) – with base 16), the formula (4) can be written 

using a logarithm with an available base, for example, decimal: 

 length(𝑖) = ⌊
𝑙𝑜𝑔10(𝑚𝑎𝑥(𝑖,1))

𝑙𝑜𝑔10 16
⌋ + 1. 

The basic CorDeGen method uses the concept of a “central” text for a term with index 𝑖 to determine 

the indices of texts in which the term occurs, and the number of these occurrences. The term 𝑖 is written to the 

“central” text (𝑐𝑖 ) and texts lying in the interval from 𝑐𝑖 − 𝑟 to 𝑐𝑖 + 𝑟 (modulo 𝑁𝑑𝑜𝑐𝑠), with 𝑐𝑖  and 𝑟 being 

calculated as 

 𝑐𝑖 = 𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 , 𝑟 = ⌊
𝑁𝑑𝑜𝑐𝑠

5
⌋ + 1. 

This means, that a term 𝑖 is assigned to text 𝑑 if and only if 𝑑 is within ±𝑟 steps of 𝑐𝑖  on the circle 

{0,1, . . . , 𝑁𝑑𝑜𝑐𝑠 − 1}. In modular arithmetic, that condition is 

 (𝑑 − 𝑐𝑖)𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 ∈ {−𝑟, . . . , 𝑟}, 
or, equivalently, 

 𝑐𝑖 ∈ {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 . 
Accounting the definition of 𝑐𝑖 , this means 

 𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 ∈ {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 . 
So, we can define 𝑆𝑑  from formulas (2) and (3) as: 

 𝑆𝑑 = {𝑖 ∈ {0,1, . . . , 𝑁𝑡𝑒𝑟𝑚𝑠 − 1}|𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 ∈ {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠}. (5) 

In words, this means that text 𝑑 is assigned all terms 𝑖 whose remainder 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 lies in the circular 

interval from 𝑑 − 𝑟 to 𝑑 + 𝑟. This set of “eligible” remainders can be defined as 

 𝑅𝑑 = {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 . 
If some 𝑥 ∈ 𝑅𝑑 , then all integers 𝑖 of the form 

 𝑖 = 𝑘𝑁𝑑𝑜𝑐𝑠 + 𝑥, 
for some integer 𝑘 ≥ 0 and also 𝑖 < 𝑁𝑡𝑒𝑟𝑚𝑠, belong to 𝑆𝑑 . Hence, the formula (5) also can be rewritten as 

 𝑆𝑑 = ⋃ {𝑘𝑁𝑑𝑜𝑐𝑠 + 𝑥|𝑘 ∈ ℤ, 0 ≤ 𝑘𝑁𝑑𝑜𝑐𝑠 + 𝑥 < 𝑁𝑡𝑒𝑟𝑚𝑠}𝑥∈𝑅𝑑
. 

The number of term 𝑖 occurrences in the text 𝑑 also depends on whether that text is “central” to that 

term or not. To calculate this, the total number of occurrences is calculated as 

 𝑁𝑑𝑜𝑐𝑠(𝑖𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 + 1), 
and then this total number is evenly distributed between all 2𝑟 + 1 texts, with the one exclusion – the 

“central” text receives the doubled count of term occurrences. This rule can be defined as 
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 count(𝑖, 𝑑) =
𝑁𝑑𝑜𝑐𝑠×(𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠+1)×(2−𝑠𝑔𝑛|𝑑−𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠|)

2𝑟+2
. 

Reference implementation and its verification 

The reference implementation of the CorDeGen method family (including the basic one and its 

parallel modifications) was developed by its authors with the .NET platform [11] and C# programming 

language [12]. Accordingly, this platform and programming language were used in this study to add the length 

estimation step to the reference implementation. 

The .NET platform and its runtime (CoreCLR) use an automatic garbage collector instead of manual 

memory management [13]. In this case, all “live” objects are divided into several generations (in the standard 

implementation of the runtime – three), and garbage collections occur independently between generations [13]. 

The reference implementation uses the StringBuilder class to generate texts, which is designed in the 

.NET platform for memory-efficient string manipulation (because strings themselves are immutable). This 

class is actually an implementation of a linked list over an array of characters (buffer), to which strings are 

added during text generation [14]. When the buffer capacity of the current node (StringBuilder instance) is 

exhausted, a new node is created with sufficient capacity for the value that needs to be written, and characters 

continue to be written to the buffer of this instance [14]. When a StringBuilder instance is created, it receives 

an initial buffer capacity, which is actually the received estimate of the text length. An abstraction of text length 

estimation was added to the reference implementation with three different instances: 

• A constant implementation that always returns a value of 16 characters – this value corresponds 

to the default StringBuilder buffer capacity; this implementation is not intended for practical use 

and will only be used within the framework of this study as a baseline to compare the other two 

implementations. 

• Implementation of fast heuristic estimation. 

• Implementation of the exact estimation formula obtained in this paper. 

To verify the correctness of the last implementation, a property-based testing approach was used 

instead of human oracle-based example tests. In the case of exact text length estimation, the only and obvious 

property is that the estimated value must be equal to the length of the received text for each text from the 

generated corpus for any value of 𝑁𝑡𝑒𝑟𝑚𝑠. The integration tests added to the reference implementation include 

this property for the basic, naive parallel, and parallel implementations of the CorDeGen method, using the 

xUnit [15] and FsCheck [16] libraries, with the following settings: 𝑁𝑡𝑒𝑟𝑚𝑠 from 1296 to 25000, the number of 

property tests per run is 200. The selected range of 𝑁𝑡𝑒𝑟𝑚𝑠  values is the compromise between maximum 

property coverage and its execution speed. 

Experiments: divergence of heuristic estimation 

During this study, the divergence between the values obtained by the fast heuristic formula and the 

exact formula obtained in this paper was experimentally measured. 

The measurement was performed for all 𝑁𝑡𝑒𝑟𝑚𝑠 values in the range from 1296 to 62500 for each text 

from the generated corpus. The maximum divergence between the calculated values of text lengths for each 

value of 𝑁𝑡𝑒𝑟𝑚𝑠 is shown in Fig. 1. 

 
Fig. 1. Max divergence between heuristic and proposed exact estimation 

 

As can be seen from Fig. 1, at all 𝑁𝑡𝑒𝑟𝑚𝑠 values from 1296 to 2400 (corresponding to six texts in the 

generated corpus), the values obtained by the fast heuristic formula are smaller than the exact values. In 

practice, this means that the initially allocated memory for the generated texts will not be enough, so additional 

memory will need to be allocated during the generation process. 

As predicted by the main hypothesis of this study, starting with seven texts in the generated corpus 

(i.e. 𝑁𝑡𝑒𝑟𝑚𝑠 > 2400), the predictions of the fast heuristic formula begin to exceed the exact values, reaching 106 

for a single text at large values of 𝑁𝑡𝑒𝑟𝑚𝑠. This leads to the allocation of extra memory for each text, which will 

not be used, but only, for example, create unnecessary pressure on the garbage collector if it is present. 
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Experiments: benchmarking 

In order to study the effect of usage of the formula of exact length estimation on the practical metrics 

(CPU, memory allocations, GC) of the reference basic CorDeGen implementation, benchmarking was 

performed within the framework of this study. 

The BenchmarkDotNet library [17], which is a de-facto standard on the .NET platform and suggested 

by its developers, was used to write and run benchmarks of three developed instances of length estimation 

approaches, including the exact formula proposed in this paper. This library greatly simplifies the 

benchmarking process by automatically selecting the required number of methods call repetitions, 

automatically performing warm-up and jitting [18]. Also, this library automatically performs statistical 

processing of the obtained results, including the possibility of setting up a baseline [18]. As it was already 

mentioned above, the default StringBuilder capacity (16) is used as the baseline in this study. 

The four 𝑁𝑡𝑒𝑟𝑚𝑠 values are used in the benchmarking process: 2500, 12500, 62500, 312500. These 

values correspond to the values used in other studies on the CorDeGen method topic but exclude the smallest 

ones (100, 500) that can be not representative. 

The benchmarking was performed on a physical machine (laptop) with the following hardware: CPU 

with 6 physical/12 logical cores, 2.60 GHz; 16 Gb RAM, 2667 MHz. The results are shown in Table 1 and Table 2. 

 

Table 1 

Benchmarking: execution time (ms) and its ratio to the baseline 

Length estimation Mean Median Mean Ratio Median Ratio 

2500 unique terms 

Default capacity 1.059 1.060 – – 

Fast heuristic 1.074 1.087 1.014 1.025 

Exact 1.257 1.261 1.187 1.190 

12500 unique terms 

Default capacity 14.919 14.849 – – 

Fast heuristic 11.857 11.861 0.795 0.799 

Exact 12.870 12.907 0.867 0.870 

62500 unique terms 

Default capacity 134.632 135.754 – – 

Fast heuristic 97.305 97.970 0.723 0.722 

Exact 105.983 106.005 0.787 0.781 

312500 unique terms 

Default capacity 1462.355 1431.525 – – 

Fast heuristic 916.263 917.954 0.627 0.641 

Exact 1008.783 1006.816 0.690 0.703 

 

Table 2 

Benchmarking: garbage collections per 1000 operations for each generation, allocated memory (MB), 

and its ratio to the baseline 

Length 

estimation 
Gen 0 Gen 1 Gen 2 

Allocated 

Memory 

Allocated 

Ratio 

2500 unique terms 

Default 

capacity 
390.6250 259.7656 85.9375 2.35 – 

Fast heuristic 390.6250 216.7969 85.9375 2.38 1.013 

Exact 347.6563 259.7656 173.8281 2.3 0.979 

12500 unique terms 

Default 

capacity 
3687.5000 1796.8750 890.6250 23.35 – 

Fast heuristic 2468.7500 1000.0000 500.0000 23.83 1.021 

Exact 2453.1250 578.1250 578.1250 23.24 0.995 

62500 unique terms 

Default 

capacity 
31500.0000 12250.0000 2750.0000 245.11 – 

Fast heuristic 18666.6667 1666.6667 833.3333 257.91 1.052 

Exact 18600.0000 1400.0000 1400.0000 244.65 0.998 

312500 unique terms 

Default 

capacity 
356000.0000 124000.0000 9000.0000 3023.64 – 

Fast heuristic 199000.0000 11000.0000 5000.0000 3313.95 1.096 

Exact 193000.0000 3000.0000 3000.0000 3019.23 0.999 
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As can be seen from Table 1 and Table 2, the implementation using the proposed exact length 

estimation formula is slower than the implementation using the fast heuristic estimation – from 6 to 17 percent 

of the “default” implementation, with the difference decreasing as 𝑁𝑡𝑒𝑟𝑚𝑠 increases. This is easily explained 

by the greater complexity of the exact formula compared to the heuristic estimate due to the need to calculate 

all valid term indices for the text. This introduces additional overhead into the implementation using this 

formula, which slows down the generation process, but it is still faster than the “default” implementation. 

However, as expected, due to this overhead, the amount of memory allocated when running the 

implementation using the proposed exact length estimation formula is reduced up to 10 percent of the “default” 

implementation on large 𝑁𝑡𝑒𝑟𝑚𝑠 in the comparison with the fast heuristic estimation. At the same time, this 

implementation allocates less memory than even the “default” implementation (even if this difference is only 

a few megabytes on large 𝑁𝑡𝑒𝑟𝑚𝑠), due to the fact that only one StringBuilder node is created, instead of many 

additional nodes created when the “default” implementation works. This also significantly reduces the number 

of garbage collections across all generations. 

Similar results were also obtained when benchmarking the naive parallel and parallel versions of the 

basic CorDeGen method. 

 

Conclusions 

This study shows the feasibility of improving existing methods of generating text corpora intended 

for use in solving software engineering tasks in the context of natural language processing information systems. 

One of the points for such improvements is the practical metrics of implementations of such methods, in 

particular, memory usage. The basic CorDeGen method was chosen as the subject of this study, the analysis 

of which showed the possibility of optimizing memory usage by implementations of this method, due to the 

insufficient study of this issue in the literature to date. 

To exactly estimate the length of a text by its index depending on the input value 𝑁𝑡𝑒𝑟𝑚𝑠  (and, 

accordingly, the amount of memory needed to be allocated for this text), this study derived a formula that takes 

into account: the set of terms included in this text (𝑆𝑑); the lengths of these terms (length(𝑖)); the number of 

their occurrences (count(𝑖, 𝑑)); the lengths of the separators between terms (𝑜𝑠𝑙 and 𝑡𝑠𝑙). 
The existing reference implementation of the basic CorDeGen method and its modifications was 

modified in order to experimentally verify the effectiveness of using the proposed formula for exact text length 

estimation. To do this, a new abstraction was introduced in the implementation, which is responsible for the 

preliminary estimation of the length for allocating memory for each text, and several instances of this 

abstraction were added: by default, using the existing fast heuristic formula, and using the proposed exact 

formula. The implementation of the exact formula was further verified for correctness using property-based 

tests. 

Experimental verification using a modified reference implementation confirmed the achievement of 

the main goal of this study – using the proposed exact estimation formula on large corpora allows reducing the 

amount of memory allocated by 10% compared to the fast heuristic formula. This result is achieved by 

increasing the generation time by 6% for the same corpus sizes. A small reduction in speed in exchange for 

reduced memory consumption can be especially critical for systems with small or limited memory. 

The results presented in this paper can be further developed in the form of adapting the obtained exact 

estimation formula to other modifications of the CorDeGen method, for example, CorDeGen+ or 

DBCorDeGen. 
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