
 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 29

https://doi.org/10.31891/2307-5732-2025-353- 3

УДК 004.051:004.912
YUSYN YAKIV

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

https://orcid.org/0000-0001-6971-3808

e-mail: yusyn@pzks.fpm.kpi.ua

OPTIMIZATION OF MEMORY USE BY IMPLEMENTATIONS OF

THE BASIC CORDEGEN METHOD

This paper is devoted to the task of generating text corpora “on demand” as input data for solving software

engineering problems during the development of information systems for their processing. One of the methods that solves

such a task is the basic CorDeGen method, however, as the analysis showed, practically none of the existing studies

consider the issue of optimizing practical metrics of software implementations of this method, such as memory usage. Only

a few papers propose pre-allocating memory for generated texts “with excess” to simplify and speed up the generation

process by removing unnecessary checks and constant memory allocation. However, this approach, implemented as a fast

heuristic formula, leads to increased memory usage in most cases.

To solve this shortcoming, the paper proposes a formula for exactly estimating the length of each text by its

ordinal index, depending on the input parameters of the basic CorDeGen method (the number of unique terms). This

formula considers the set of terms that occur in a particular text, their length, the number of occurrences of each, as well

as the length of separators between occurrences of the same term and between different terms.

The experimental verification showed the effectiveness of using the proposed formula for exact text length

estimation in terms of reducing memory consumption by the reference implementation of the basic CorDeGen method and

its parallel modifications. The efficiency increases with the corpus size – from 3% for small (2500 unique terms) to 10%

for very large corpora (312500 unique terms) compared to using the existing fast heuristic formula. At the same time, the

degree of slowdown in the generation process decreases with increasing corpus size – from 17 to 6 percent at the same

size. In practice, reducing memory consumption by increasing “net” generation time can be especially useful for systems

with little or limited available memory to avoid memory overuse.

Keywords: natural language processing; corpora generation; CorDeGen method; memory consumption

optimization.

ЮСИН ЯКІВ
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

ОПТИМІЗАЦІЯ ВИКОРИСТАННЯ ПАМ’ЯТІ РЕАЛІЗАЦІЯМИ БАЗОВОГО МЕТОДУ CORDEGEN

Ця робота присвячена задачі генерування корпусів текстів «на вимогу» в якості вхідних даних для вирішення задач

програмної інженерії під час розроблення інформаційних систем для їх обробки. Одним із методів, що вирішує таку задачу, є
базовий метод CorDeGen, проте, як показав проведений аналіз, практично жодна із існуючих робіт не розглядає питання

оптимізації практичних метрик програмних реалізацій цього методу, таких як використання пам’яті. Лише деякі роботи

пропонують попередньо виділяти пам’ять для генерованих текстів «з надлишком», щоб спростити та пришвидшити процес

генерування за рахунок видалення зайвих перевірок та постійного виділення пам’яті. Але такий підхід, реалізований у вигляді

швидкої евристичної формули, призводить до збільшеного використання пам’яті у більшості випадків.
Для вирішення цього недоліку в роботі запропоновано формулу точної оцінки довжини кожного тексту за його

порядковим індексом в залежності від вхідних параметрів базового методу CorDeGen (кількості унікальних термів). Ця

формула враховує множину термів, що потрапляють до певного тексту, їх довжини, кількість входжень кожного, а також

довжини роздільників між входженнями одного терму та між різними термами.

Проведена експериментальна перевірка показала ефективність використання запропонованої формули точної оцінки
довжини тексту у частині зменшення споживання пам’яті еталонною реалізацією базового методу CorDeGen та його

паралельних модифікацій. Ефективність збільшується із розміром корпусу – від 3% для маленьких до 10% для надвеликих

корпусів у порівнянні із використанням існуючої швидкої евристичної формули. При цьому ступінь уповільнення процесу

генерування зменшується із збільшенням корпусу – від 17 до 6 відсотків на тих самих розмірах. На практиці, зменшення

споживання пам’яті за рахунок збільшення «чистого» часу генерування може бути особливо корисним для систем із малою чи
обмеженою кількістю доступної пам’яті, для уникнення її перевикористання.

Ключові слова: оброблення природної мови; генерування корпусів; метод CorDeGen; оптимізація використання

пам’яті.

Стаття надійшла до редакції / Received 07.04.2025

Прийнята до друку / Accepted 18.04.2025

Introduction

In many professional fields today, information systems play a crucial role in solving different tasks

related to natural language processing, in particular text analysis. However, from a software engineering

perspective, developing and testing these systems presents unique challenges that are rarely encountered in the

context of other types of information systems. One such challenge is the volume of input data for development

or verification testing, as such systems are typically designed to process text corpora. Manual corpora

preparation may be insufficient in terms of time and human effort if dozens or hundreds of corpora are needed,

so only corpora generation “on the fly” can cover such requirements.

The task of automatically generating text corpora, considering the peculiarities of their further use

when solving software engineering problems, is still poorly researched, as are the methods of solving this task

https://orcid.org/0000-0001-6971-3808
mailto:yusyn@pzks.fpm.kpi.ua

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 30

in practice. Even fewer studies are devoted to the issue of software implementations of such methods and their

practical optimizations, although due to them, different implementations of the same method can differ

strikingly from each other in terms of metrics such as speed or memory usage. That is why this task is still

relevant.

Analysis of recent research

Even though today’s literature presents a large number of studies devoted to the construction and/or

generation of text corpora, mostly all of them focus only on the one-time execution of this process. In

conclusion, the properties of the methods and algorithms used or proposed in such papers for the construction

and/or generation of corpus make them hardly (partially or completely) applicable to solve software

engineering problems.

The majority of the studies are devoted to the construction/generation of corpora based on large

natural data, which are transformed and processed in a certain way, e.g. [1–5]. This requirement significantly

limits the possibility of their use in developing and/or testing information systems because the initial data must

be stored, managed somewhere additionally, and should be retrieved on each usage.

Other methods, like the ones presented in [6–8], do not require a large amount of input natural data to

obtain a corpus, relatively small volume is enough for them. This simplifies the data storage, management, and

retrieval, however, these methods have a low speed, so their use will significantly slow down the process of

solving software engineering problems.

Also, determining the structure and properties of the corpus generated by all these methods (presented

in [1–8]) can be difficult.

There are also methods for generating text corpora, which are specialized for solving software

engineering problems during the creation of information systems. These methods consider the specific

requirements imposed on them by use in this context. The CorDeGen method [9] is one of such methods and

consists of the following abstract steps [9]:

1. Input the parameter 𝑁𝑡𝑒𝑟𝑚𝑠 – the number of unique terms.

2. Calculate the parameter 𝑁𝑑𝑜𝑐𝑠 (the number of texts in the corpus) using the function 𝑓(𝑥).

3. For each term 𝑖:
a. Receive the string representation of the term.

b. Calculate the vector 𝑡𝑓𝑖, containing the number of occurrences of the term in texts, using the

calculation of the function 𝑔(𝑥).

c. Record to each text the string representation of the term based on the calculated number of

occurrences from the vector 𝑡𝑓𝑖 .

The description of the abstract CorDeGen method does not specify a specific method of receiving a

string representation of a term and specific functions 𝑓(𝑥) or 𝑔(𝑥), only specific requirements that should be

met by them. The basic CorDeGen is defined using the abstract steps and fixates the specific instances of these

three components [9].

To date, several existing studies address or mention the issue of practical optimizations of the basic

CorDeGen method and its implementations. The first such paper is [10], which considers the issue of

accelerating the corpus generation process by parallelizing the main cycle of the method. This is possible

because each iteration of the loop (calculating the representation and occurrences of the next term) is

independent of each other, so they can be effectively executed in parallel. The only issue during parallelization

is the synchronization of the recording of terms to texts, depending on the method of solving which, the naive

parallel and parallel CorDeGen methods are proposed in [10].

The second is [9], which mentions the issue of memory allocation optimization for texts of the

generated corpus. This paper shows that a direct practical implementation of the basic CorDeGen method

requires constant manual or automatic memory allocation for texts as they are generated, which also slows

down generation. Instead, [9] proposes pre-allocating memory for each text “with excess”, the amount of which

is calculated using a fast heuristic formula (1) for the length of the text:

𝑁𝑡𝑒𝑟𝑚𝑠𝑁𝑑𝑜𝑐𝑠

2

⌊
𝑁𝑑𝑜𝑐𝑠

5
⌋+2

. (1)

However, the heuristic formula (1), although fast to calculate, has its drawbacks. Firstly, as the name

of this formula implies, it is derived heuristically and there is no formal proof that the amount of memory

calculated using it will be sufficient for any corpus size. This means that when using it, checks for the

sufficiency of allocated memory are still required during generation.

Secondly, this formula gives the same length estimate for all texts in the corpus, although in practice,

in most cases, the lengths of the texts differ. For example, if 𝑁𝑡𝑒𝑟𝑚𝑠 is increased by 1 (but the value of 𝑁𝑑𝑜𝑐𝑠,

which depends on it, remains the same), the length of all texts according to this formula will increase by the

same amount, although the new term will be recorded only in a certain subset of these texts. In addition, the

power dependence of the text length according to formula (1) looks like it will cause a large overestimation of

the text length for large 𝑁𝑡𝑒𝑟𝑚𝑠.

These shortcomings of the proposed stage of preliminary estimation of text length for memory

allocation can be eliminated by replacing formula (1) with another one that will exactly estimate the length of

each text from the generated corpus.

 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 31

Formulation of the goals of the article

The aim of this paper is to improve the efficiency of software implementations of the basic CorDeGen

method according to the criterion of memory usage by adding to the generation process a preliminary stage of

accurate estimation of the length of each text when allocating memory for them.

To achieve this goal, the following tasks were set and solved during this study:

• Derivation of the formula for the exact length of the text by its index for a certain value of 𝑁𝑡𝑒𝑟𝑚𝑠

when using the basic CorDeGen method.

• Adding the software implementation of preliminary estimation of text length during memory

allocation based on the obtained formula to existing software implementing the basic CorDeGen

method; verification of this implementation.

• Experimental evaluation of the effect of using an exact prior estimation of text length during

memory allocation, compared to using a fast heuristic formula.

Presentation of the main material

Text length formula

It is obvious that the length of the text with index 𝑑 is obtained as the sum of the lengths of all

occurrences of terms that fall into this text, as well as the lengths of the separators between these occurrences.

If we consider the general case when the separator of occurrences of one term and the separator of different

terms do not coincide, then we obtain formula (2), where 𝑆𝑑 is the set of term indices that fall into the text 𝑑,

𝑜𝑠𝑙 is the length of the separator of occurrences of one term, 𝑡𝑠𝑙 is the length of the separator of different terms:

 𝑑𝑙𝑑 = ∑ 𝑐𝑜𝑢𝑛𝑡(𝑖, 𝑑) × (𝑙𝑒𝑛𝑔𝑡ℎ(𝑖) + 𝑜𝑠𝑙) − 𝑜𝑠𝑙 + 𝑡𝑠𝑙𝑖∈𝑆𝑑
. (2)

Formula (2) assumes that the separator of different terms is always added after each term, that is, the

text ends with this separator. If a specific implementation of the basic CorDeGen method does not add the

separator after the last term (i.e., the text ends with the last occurrence of the last term, not the separator), then

formula (2) transforms into formula (3) in also an obvious way:

 𝑑𝑙𝑑 = −𝑡𝑠𝑙 + ∑ 𝑐𝑜𝑢𝑛𝑡(𝑖, 𝑑) × (𝑙𝑒𝑛𝑔𝑡ℎ(𝑖) + 𝑜𝑠𝑙) − 𝑜𝑠𝑙 + 𝑡𝑠𝑙𝑖∈𝑆𝑑
. (3)

Also, formula (2) or formula (3) changes in an obvious way if the lengths 𝑜𝑠𝑙 and 𝑡𝑠𝑙 coincide or

these separators are the same.

The basic CorDeGen method uses the index of the term 𝑖 written in hexadecimal as its string

representation. Accordingly, the length of such a representation can be calculated by the formula:

 length(𝑖) = ⌊𝑙𝑜𝑔16(𝑚𝑎𝑥(𝑖, 1))⌋ + 1. (4)

Considering that many programming languages may lack a built-in function for calculating a

logarithm with an arbitrary base (in the case of formula (4) – with base 16), the formula (4) can be written

using a logarithm with an available base, for example, decimal:

 length(𝑖) = ⌊
𝑙𝑜𝑔10(𝑚𝑎𝑥(𝑖,1))

𝑙𝑜𝑔10 16
⌋ + 1.

The basic CorDeGen method uses the concept of a “central” text for a term with index 𝑖 to determine

the indices of texts in which the term occurs, and the number of these occurrences. The term 𝑖 is written to the

“central” text (𝑐𝑖) and texts lying in the interval from 𝑐𝑖 − 𝑟 to 𝑐𝑖 + 𝑟 (modulo 𝑁𝑑𝑜𝑐𝑠), with 𝑐𝑖 and 𝑟 being

calculated as

 𝑐𝑖 = 𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 , 𝑟 = ⌊
𝑁𝑑𝑜𝑐𝑠

5
⌋ + 1.

This means, that a term 𝑖 is assigned to text 𝑑 if and only if 𝑑 is within ±𝑟 steps of 𝑐𝑖 on the circle

{0,1, . . . , 𝑁𝑑𝑜𝑐𝑠 − 1}. In modular arithmetic, that condition is

 (𝑑 − 𝑐𝑖)𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 ∈ {−𝑟, . . . , 𝑟},
or, equivalently,

 𝑐𝑖 ∈ {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 .
Accounting the definition of 𝑐𝑖 , this means

 𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 ∈ {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 .
So, we can define 𝑆𝑑 from formulas (2) and (3) as:

 𝑆𝑑 = {𝑖 ∈ {0,1, . . . , 𝑁𝑡𝑒𝑟𝑚𝑠 − 1}|𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 ∈ {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠}. (5)

In words, this means that text 𝑑 is assigned all terms 𝑖 whose remainder 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 lies in the circular

interval from 𝑑 − 𝑟 to 𝑑 + 𝑟. This set of “eligible” remainders can be defined as

 𝑅𝑑 = {𝑑 − 𝑟, . . . , 𝑑 + 𝑟}𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 .
If some 𝑥 ∈ 𝑅𝑑 , then all integers 𝑖 of the form

 𝑖 = 𝑘𝑁𝑑𝑜𝑐𝑠 + 𝑥,
for some integer 𝑘 ≥ 0 and also 𝑖 < 𝑁𝑡𝑒𝑟𝑚𝑠, belong to 𝑆𝑑 . Hence, the formula (5) also can be rewritten as

 𝑆𝑑 = ⋃ {𝑘𝑁𝑑𝑜𝑐𝑠 + 𝑥|𝑘 ∈ ℤ, 0 ≤ 𝑘𝑁𝑑𝑜𝑐𝑠 + 𝑥 < 𝑁𝑡𝑒𝑟𝑚𝑠}𝑥∈𝑅𝑑
.

The number of term 𝑖 occurrences in the text 𝑑 also depends on whether that text is “central” to that

term or not. To calculate this, the total number of occurrences is calculated as

 𝑁𝑑𝑜𝑐𝑠(𝑖𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠 + 1),
and then this total number is evenly distributed between all 2𝑟 + 1 texts, with the one exclusion – the

“central” text receives the doubled count of term occurrences. This rule can be defined as

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 32

 count(𝑖, 𝑑) =
𝑁𝑑𝑜𝑐𝑠×(𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠+1)×(2−𝑠𝑔𝑛|𝑑−𝑖 𝑚𝑜𝑑 𝑁𝑑𝑜𝑐𝑠|)

2𝑟+2
.

Reference implementation and its verification

The reference implementation of the CorDeGen method family (including the basic one and its

parallel modifications) was developed by its authors with the .NET platform [11] and C# programming

language [12]. Accordingly, this platform and programming language were used in this study to add the length

estimation step to the reference implementation.

The .NET platform and its runtime (CoreCLR) use an automatic garbage collector instead of manual

memory management [13]. In this case, all “live” objects are divided into several generations (in the standard

implementation of the runtime – three), and garbage collections occur independently between generations [13].

The reference implementation uses the StringBuilder class to generate texts, which is designed in the

.NET platform for memory-efficient string manipulation (because strings themselves are immutable). This

class is actually an implementation of a linked list over an array of characters (buffer), to which strings are

added during text generation [14]. When the buffer capacity of the current node (StringBuilder instance) is

exhausted, a new node is created with sufficient capacity for the value that needs to be written, and characters

continue to be written to the buffer of this instance [14]. When a StringBuilder instance is created, it receives

an initial buffer capacity, which is actually the received estimate of the text length. An abstraction of text length

estimation was added to the reference implementation with three different instances:

• A constant implementation that always returns a value of 16 characters – this value corresponds

to the default StringBuilder buffer capacity; this implementation is not intended for practical use

and will only be used within the framework of this study as a baseline to compare the other two

implementations.

• Implementation of fast heuristic estimation.

• Implementation of the exact estimation formula obtained in this paper.

To verify the correctness of the last implementation, a property-based testing approach was used

instead of human oracle-based example tests. In the case of exact text length estimation, the only and obvious

property is that the estimated value must be equal to the length of the received text for each text from the

generated corpus for any value of 𝑁𝑡𝑒𝑟𝑚𝑠. The integration tests added to the reference implementation include

this property for the basic, naive parallel, and parallel implementations of the CorDeGen method, using the

xUnit [15] and FsCheck [16] libraries, with the following settings: 𝑁𝑡𝑒𝑟𝑚𝑠 from 1296 to 25000, the number of

property tests per run is 200. The selected range of 𝑁𝑡𝑒𝑟𝑚𝑠 values is the compromise between maximum

property coverage and its execution speed.

Experiments: divergence of heuristic estimation

During this study, the divergence between the values obtained by the fast heuristic formula and the

exact formula obtained in this paper was experimentally measured.

The measurement was performed for all 𝑁𝑡𝑒𝑟𝑚𝑠 values in the range from 1296 to 62500 for each text

from the generated corpus. The maximum divergence between the calculated values of text lengths for each

value of 𝑁𝑡𝑒𝑟𝑚𝑠 is shown in Fig. 1.

Fig. 1. Max divergence between heuristic and proposed exact estimation

As can be seen from Fig. 1, at all 𝑁𝑡𝑒𝑟𝑚𝑠 values from 1296 to 2400 (corresponding to six texts in the

generated corpus), the values obtained by the fast heuristic formula are smaller than the exact values. In

practice, this means that the initially allocated memory for the generated texts will not be enough, so additional

memory will need to be allocated during the generation process.

As predicted by the main hypothesis of this study, starting with seven texts in the generated corpus

(i.e. 𝑁𝑡𝑒𝑟𝑚𝑠 > 2400), the predictions of the fast heuristic formula begin to exceed the exact values, reaching 106

for a single text at large values of 𝑁𝑡𝑒𝑟𝑚𝑠. This leads to the allocation of extra memory for each text, which will

not be used, but only, for example, create unnecessary pressure on the garbage collector if it is present.

 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 33

Experiments: benchmarking

In order to study the effect of usage of the formula of exact length estimation on the practical metrics

(CPU, memory allocations, GC) of the reference basic CorDeGen implementation, benchmarking was

performed within the framework of this study.

The BenchmarkDotNet library [17], which is a de-facto standard on the .NET platform and suggested

by its developers, was used to write and run benchmarks of three developed instances of length estimation

approaches, including the exact formula proposed in this paper. This library greatly simplifies the

benchmarking process by automatically selecting the required number of methods call repetitions,

automatically performing warm-up and jitting [18]. Also, this library automatically performs statistical

processing of the obtained results, including the possibility of setting up a baseline [18]. As it was already

mentioned above, the default StringBuilder capacity (16) is used as the baseline in this study.

The four 𝑁𝑡𝑒𝑟𝑚𝑠 values are used in the benchmarking process: 2500, 12500, 62500, 312500. These

values correspond to the values used in other studies on the CorDeGen method topic but exclude the smallest

ones (100, 500) that can be not representative.

The benchmarking was performed on a physical machine (laptop) with the following hardware: CPU

with 6 physical/12 logical cores, 2.60 GHz; 16 Gb RAM, 2667 MHz. The results are shown in Table 1 and Table 2.

Table 1

Benchmarking: execution time (ms) and its ratio to the baseline

Length estimation Mean Median Mean Ratio Median Ratio

2500 unique terms

Default capacity 1.059 1.060 – –

Fast heuristic 1.074 1.087 1.014 1.025

Exact 1.257 1.261 1.187 1.190

12500 unique terms

Default capacity 14.919 14.849 – –

Fast heuristic 11.857 11.861 0.795 0.799

Exact 12.870 12.907 0.867 0.870

62500 unique terms

Default capacity 134.632 135.754 – –

Fast heuristic 97.305 97.970 0.723 0.722

Exact 105.983 106.005 0.787 0.781

312500 unique terms

Default capacity 1462.355 1431.525 – –

Fast heuristic 916.263 917.954 0.627 0.641

Exact 1008.783 1006.816 0.690 0.703

Table 2

Benchmarking: garbage collections per 1000 operations for each generation, allocated memory (MB),

and its ratio to the baseline

Length

estimation
Gen 0 Gen 1 Gen 2

Allocated

Memory

Allocated

Ratio

2500 unique terms

Default

capacity
390.6250 259.7656 85.9375 2.35 –

Fast heuristic 390.6250 216.7969 85.9375 2.38 1.013

Exact 347.6563 259.7656 173.8281 2.3 0.979

12500 unique terms

Default

capacity
3687.5000 1796.8750 890.6250 23.35 –

Fast heuristic 2468.7500 1000.0000 500.0000 23.83 1.021

Exact 2453.1250 578.1250 578.1250 23.24 0.995

62500 unique terms

Default

capacity
31500.0000 12250.0000 2750.0000 245.11 –

Fast heuristic 18666.6667 1666.6667 833.3333 257.91 1.052

Exact 18600.0000 1400.0000 1400.0000 244.65 0.998

312500 unique terms

Default

capacity
356000.0000 124000.0000 9000.0000 3023.64 –

Fast heuristic 199000.0000 11000.0000 5000.0000 3313.95 1.096

Exact 193000.0000 3000.0000 3000.0000 3019.23 0.999

 Technical sciences ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 34

As can be seen from Table 1 and Table 2, the implementation using the proposed exact length

estimation formula is slower than the implementation using the fast heuristic estimation – from 6 to 17 percent

of the “default” implementation, with the difference decreasing as 𝑁𝑡𝑒𝑟𝑚𝑠 increases. This is easily explained

by the greater complexity of the exact formula compared to the heuristic estimate due to the need to calculate

all valid term indices for the text. This introduces additional overhead into the implementation using this

formula, which slows down the generation process, but it is still faster than the “default” implementation.

However, as expected, due to this overhead, the amount of memory allocated when running the

implementation using the proposed exact length estimation formula is reduced up to 10 percent of the “default”

implementation on large 𝑁𝑡𝑒𝑟𝑚𝑠 in the comparison with the fast heuristic estimation. At the same time, this

implementation allocates less memory than even the “default” implementation (even if this difference is only

a few megabytes on large 𝑁𝑡𝑒𝑟𝑚𝑠), due to the fact that only one StringBuilder node is created, instead of many

additional nodes created when the “default” implementation works. This also significantly reduces the number

of garbage collections across all generations.

Similar results were also obtained when benchmarking the naive parallel and parallel versions of the

basic CorDeGen method.

Conclusions

This study shows the feasibility of improving existing methods of generating text corpora intended

for use in solving software engineering tasks in the context of natural language processing information systems.

One of the points for such improvements is the practical metrics of implementations of such methods, in

particular, memory usage. The basic CorDeGen method was chosen as the subject of this study, the analysis

of which showed the possibility of optimizing memory usage by implementations of this method, due to the

insufficient study of this issue in the literature to date.

To exactly estimate the length of a text by its index depending on the input value 𝑁𝑡𝑒𝑟𝑚𝑠 (and,

accordingly, the amount of memory needed to be allocated for this text), this study derived a formula that takes

into account: the set of terms included in this text (𝑆𝑑); the lengths of these terms (length(𝑖)); the number of

their occurrences (count(𝑖, 𝑑)); the lengths of the separators between terms (𝑜𝑠𝑙 and 𝑡𝑠𝑙).
The existing reference implementation of the basic CorDeGen method and its modifications was

modified in order to experimentally verify the effectiveness of using the proposed formula for exact text length

estimation. To do this, a new abstraction was introduced in the implementation, which is responsible for the

preliminary estimation of the length for allocating memory for each text, and several instances of this

abstraction were added: by default, using the existing fast heuristic formula, and using the proposed exact

formula. The implementation of the exact formula was further verified for correctness using property-based

tests.

Experimental verification using a modified reference implementation confirmed the achievement of

the main goal of this study – using the proposed exact estimation formula on large corpora allows reducing the

amount of memory allocated by 10% compared to the fast heuristic formula. This result is achieved by

increasing the generation time by 6% for the same corpus sizes. A small reduction in speed in exchange for

reduced memory consumption can be especially critical for systems with small or limited memory.

The results presented in this paper can be further developed in the form of adapting the obtained exact

estimation formula to other modifications of the CorDeGen method, for example, CorDeGen+ or

DBCorDeGen.

References

1. Recski G., Iklódi E., Lellmann B., “BRISE-plandok: a German legal corpus of building

regulations,” Language Resources and Evaluation, (2024). https://doi.org/10.1007/s10579-024-09747-7.

2. Arhar Holdt Š., Kosem I., “Šolar, the developmental corpus of Slovene,” Language Resources and

Evaluation, (2024). https://doi.org/10.1007/s10579-024-09758-4.

3. Vitório D., Souza E., Martins L., “Building a relevance feedback corpus for legal information

retrieval in the real-case scenario of the Brazilian Chamber of Deputies,” Language Resources and Evaluation,

(2024). https://doi.org/10.1007/s10579-024-09767-3.

4. Rakotomalala F., Hajalalaina A. R., Ravonimanantsoa Ndaohialy M. V., “FLICs (Facebook

Language Informal Corpus): a novel dataset for informal language,” International Journal of Data Science and

Analytics, vol. 18, pp. 393-403, (2024). https://doi.org/10.1007/s41060-023-00460-2.

5. Lichtarge J., “Corpora generation for grammatical error correction,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, (2019). https://doi.org/10.18653/v1/N19-1333.

6. Nazura J., Muralidhara B. L., “Automating Corpora Generation with Semantic Cleaning and

Tagging of Tweets for Multi-dimensional Social Media Analytics,” International Journal of Computer

Applications, vol. 127, no. 12, pp. 11-16, (2015). https://doi.org/10.5120/ijca2015906548.

https://doi.org/10.1007/s10579-024-09747-7
https://doi.org/10.1007/s10579-024-09758-4
https://doi.org/10.1007/s10579-024-09767-3
https://doi.org/10.1007/s41060-023-00460-2
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.5120/ijca2015906548

 Технічні науки ISSN 2307-5732

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 35

7. Alberti C., Andor D., Pitler E., Devlin J., Collins M., “Synthetic QA Corpora Generation with

Roundtrip Consistency,” in Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, (2019). https://doi.org/10.18653/v1/P19-1620.

8. Boujelbane R., Ellouze Khemekhem M., Belguith L., “Mapping Rules for Building a Tunisian

Dialect Lexicon and Generating Corpora,” in Proceedings of the Sixth International Joint Conference on

Natural Language Processing, (2013). https://aclanthology.org/I13-1048/

9. Yusyn Y., “Methods and software tools for metamorphic testing of software systems for automatic

clustering of natural language text data,” PhD thesis, Kyiv, (2022) [in Ukrainian].

10. Yusyn Y., Zabolotnia T., “Accelerating the process of text data corpora generation by the

deterministic method,” Eastern-European Journal of Enterprise Technologies, vol. 1, no. 2 (127), pp. 26-34,

(2024). https://doi.org/10.15587/1729-4061.2024.298670.

11. Microsoft, “What's new in .NET 8,” (2023). [Online]. Available: https://learn.microsoft.com/en-

us/dotnet/core/whats-new/dotnet-8/overview.

12. Microsoft, “What's new in C# 12,” (2023). [Online]. Available: https://learn.microsoft.com/en-

us/dotnet/csharp/whats-new/csharp-12.

13. Kokosa K., “Pro .NET Memory Management: For Better Code, Performance, and Scalability (1st

Edition)”, Apress, (2018).

14. Lock A., “Series: A deep dive on StringBuilder,” (2021). [Online]. Available:

https://andrewlock.net/series/a-deep-dive-on-stringbuilder/.

15. .NET Foundation and contributors, “Home > xUnit.net,” (2019). [Online]. Available:

https://xunit.net/.

16. Aichernig B., Schumi R., “Property-based Testing with FsCheck by Deriving Properties from

Business Rule Models,” in In 2016 IEEE Ninth International Conference on Software Testing, Verification,

and Validation Workshops (ICSTW), 13th Workshop on Advances in Model Based Testing (A-MOST 2016),

(2016).

17. NET Foundation and contributors, “Overview | BenchmarkDotNet,” (2018). [Online]. Available:

https://benchmarkdotnet.org/articles/overview.html.

18. Akinshin A., “Pro .NET Benchmarking: The Art of Performance Measurement”, Apress, (2019).

https://doi.org/10.18653/v1/P19-1620
https://aclanthology.org/I13-1048/
https://doi.org/10.15587/1729-4061.2024.298670
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-8/overview
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-8/overview
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12
https://andrewlock.net/series/a-deep-dive-on-stringbuilder/
https://xunit.net/
https://benchmarkdotnet.org/articles/overview.html

	УДК 004.051:004.912
	Introduction
	Analysis of recent research
	Formulation of the goals of the article
	Presentation of the main material
	Text length formula
	Reference implementation and its verification
	Experiments: divergence of heuristic estimation
	Experiments: benchmarking

	Conclusions
	References

