TexHiuHI HayKu ISSN 2307-5732

https://doi.org/10.31891/2307-5732-2025-353-3
VK 004.051:004.912

YUSYN YAKIV
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
https://orcid.org/0000-0001-6971-3808

e-mail: yusyn@pzks.fpm.kpi.ua

OPTIMIZATION OF MEMORY USE BY IMPLEMENTATIONS OF
THE BASIC CORDEGEN METHOD

This paper is devoted to the task of generating text corpora “on demand” as input data for solving software
engineering problems during the development of information systems for their processing. One of the methods that solves
such a task is the basic CorDeGen method, however, as the analysis showed, practically none of the existing studies
consider the issue of optimizing practical metrics of software implementations of this method, such as memory usage. Only
a few papers propose pre-allocating memory for generated texts “with excess” to simplify and speed up the generation
process by removing unnecessary checks and constant memory allocation. However, this approach, implemented as a fast
heuristic formula, leads to increased memory usage in most cases.

To solve this shortcoming, the paper proposes a formula for exactly estimating the length of each text by its
ordinal index, depending on the input parameters of the basic CorDeGen method (the number of unique terms). This
formula considers the set of terms that occur in a particular text, their length, the number of occurrences of each, as well
as the length of separators between occurrences of the same term and between different terms.

The experimental verification showed the effectiveness of using the proposed formula for exact text length
estimation in terms of reducing memory consumption by the reference implementation of the basic CorDeGen method and
its parallel modifications. The efficiency increases with the corpus size — from 3% for small (2500 unique terms) to 10%
Jor very large corpora (312500 unique terms) compared to using the existing fast heuristic formula. At the same time, the
degree of slowdown in the generation process decreases with increasing corpus size — from 17 to 6 percent at the same
size. In practice, reducing memory consumption by increasing “net” generation time can be especially useful for systems
with little or limited available memory to avoid memory overuse.

Keywords: natural language processing; corpora generation;, CorDeGen method; memory consumption
optimization.

IOCHH SKIB

Hamionansauii TexHiYHMI yHiBepcuTeT YKpainn « KHIBChKHI MONITEXHIYHUN 1HCTUTYT iMeHi Iropst Cikopcbkoro»

ONTUMIBAIISA BUKOPUCTAHHA NAM’ATI PEAJIIBALIIAMU BA30OBOI'O METOJY CORDEGEN

L poboma npucssuena 3adaui 2enepysanis KOPRYCi6 MeKCMi6 «HA GUMO2Y» 8 AKOCMI BXIOHUX OAHUX OJsl 6UPIUEHHA 3a0a4
npozpamuoi indicenepii nio yac po3podrenna ingopmayitinux cucmem ona ix od6pooku. OOnum i3 Memoois, wo supiwye maxy 3a0ayy, €
6asosuti memoo CorDeGen, npome, K nokazagé nposeoeHull aHanis, NPaKmuiHo HCOOHA i3 ICHYIOUUX podim He po3ensadac NUMAaHHs
onmumizayii NPAKMUYHUX MempuK RPOPAMHUX peanizayill ybo2o Memooy, MaKux AK euxopucmauus nam’ami. Jluwe Oesxi pobomu
NPONOHYIOMb NONEPEOHbO BUOLIAMU NAM SIMb OJiA 2EHEePOBANUX THEKCMIG «3 HAOIUUKOMY, Wob CHPOCMUMU Ma NPUIMGUOWUMU npoYec
2eHepyB8anHs 34 PAXYHOK GUOGICHHS 3aUGUX NEPEeSiPOK ma NOCMIUHO20 6udileHHs nam ami. Ane maxuii nioxio, peanizoéanuil y 6ueisaoi
WeUOKOI e8pucmuyHol hopmynu, npu3gooums 00 30i1bUEHO20 BUKOPUCMAHHS NAM 'Ami Y Oibuwocmi 6unaokxis.

Mna supiwenns ybo2o HedoniKy 6 pobomi 3anponoHo6aHo Gopmyny mouHoi OyiHKU OOBICUHU KOJICHO20 MEKCHLY 3a 11020
NOPAOKOBUM [HOEKCOM 8 3aNedCHocmi 8i0 6xXiOHux napamempie 6azosoeo memody CorDeGen (kinbkocmi yHikaneHux mepmis). La
Gopmyna 6paxogye MHONMCUHY MEPMI6, WO NOMPANIAIOMb 00 NEEHOZ0 MEKCMY, iX O0MHCUHU, KITLKICIb 8X00HCEHb KOJICHO20, A MAKOUC
008IHCUHU POZOLTLHUKIB MIJNC BXOONCEHHAMU OOHO20 MEPMY MA MidC PISHUMU MEPMAMU.

IIposedena excnepumenmansvra nepegipka NOKaA3ana egheKmusHicms BUKOPUCIMAHHS 3aNPONOHOBAHOT POPMYIU MOYHOT OYiHKU
006IUCUHU MEKCIY Y YACTNUHI 3MEHUEHHA CHOJICUBAHHS Nam simi emanouHolo peanizayicio 6azoozo memoody CorDeGen ma iiozo
napanenvuux moougirayiu. E¢pexmusnicmo 30invutyemoca i3 posmipom kopnycy — 6io 3% ona manenvkux 0o 10% 0ns naosenuxux
KOPNyci6 y NOPIGHAHHI i3 SUKOPUCMAHHAM ICHYIOYOI wWeuoKoi egpucmuynoi gopmyau. Ipu ybomy cmyninb YnogiibHeHHs npoyecy
2eHepYB8aHHs 3MEHUYEMbCA 13 30inbleHHaM Kopnycy — 6i0 17 0o 6 eiocomkié na mux camux posmipax. Ha npaxmuyi, smenwenns
CROJICUBAHHA NAM 'AMI 30 PAXYHOK 30INbUEHHS «HUCIO20» YACY 2eHePYBAHHI MOJCe OYymu 0COOIUB0 KOPUCHUM OISl CUCHIEM 13 MATOIO0 YUl
00MENHCEHOI0 KINbKICMI0 00CMYNHOI nam 'ami, 015 YHUKHEHHS i nepesUKOpUCmanHs.

Knouosi cnosa: obpobnennss npupoonoi mosu, 2enepysants xopnycie, memod CorDeGen; onmumizayisi UKOPUCMAHHSL
nam’sami.

Crarts Hagidnma no penaxii / Received 07.04.2025
[Mpuitasta no apyky / Accepted 18.04.2025

Introduction

In many professional fields today, information systems play a crucial role in solving different tasks
related to natural language processing, in particular text analysis. However, from a software engineering
perspective, developing and testing these systems presents unique challenges that are rarely encountered in the
context of other types of information systems. One such challenge is the volume of input data for development
or verification testing, as such systems are typically designed to process text corpora. Manual corpora
preparation may be insufficient in terms of time and human effort if dozens or hundreds of corpora are needed,
so only corpora generation “on the fly” can cover such requirements.

The task of automatically generating text corpora, considering the peculiarities of their further use
when solving software engineering problems, is still poorly researched, as are the methods of solving this task

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 29

https://orcid.org/0000-0001-6971-3808
mailto:yusyn@pzks.fpm.kpi.ua

Technical sciences ISSN 2307-5732

in practice. Even fewer studies are devoted to the issue of software implementations of such methods and their
practical optimizations, although due to them, different implementations of the same method can differ
strikingly from each other in terms of metrics such as speed or memory usage. That is why this task is still
relevant.

Analysis of recent research

Even though today’s literature presents a large number of studies devoted to the construction and/or
generation of text corpora, mostly all of them focus only on the one-time execution of this process. In
conclusion, the properties of the methods and algorithms used or proposed in such papers for the construction
and/or generation of corpus make them hardly (partially or completely) applicable to solve software
engineering problems.

The majority of the studies are devoted to the construction/generation of corpora based on large
natural data, which are transformed and processed in a certain way, e.g. [1-5]. This requirement significantly
limits the possibility of their use in developing and/or testing information systems because the initial data must
be stored, managed somewhere additionally, and should be retrieved on each usage.

Other methods, like the ones presented in [6—8], do not require a large amount of input natural data to
obtain a corpus, relatively small volume is enough for them. This simplifies the data storage, management, and
retrieval, however, these methods have a low speed, so their use will significantly slow down the process of
solving software engineering problems.

Also, determining the structure and properties of the corpus generated by all these methods (presented
in [1-8]) can be difficult.

There are also methods for generating text corpora, which are specialized for solving software
engineering problems during the creation of information systems. These methods consider the specific
requirements imposed on them by use in this context. The CorDeGen method [9] is one of such methods and
consists of the following abstract steps [9]:

1. Input the parameter Ny, — the number of unique terms.

2. Calculate the parameter Ny, .5 (the number of texts in the corpus) using the function f(x).

3. For each term i:

a. Receive the string representation of the term.

b. Calculate the vector tf;, containing the number of occurrences of the term in texts, using the
calculation of the function g(x).

c. Record to each text the string representation of the term based on the calculated number of
occurrences from the vector tf;.

The description of the abstract CorDeGen method does not specify a specific method of receiving a
string representation of a term and specific functions f(x) or g(x), only specific requirements that should be
met by them. The basic CorDeGen is defined using the abstract steps and fixates the specific instances of these
three components [9].

To date, several existing studies address or mention the issue of practical optimizations of the basic
CorDeGen method and its implementations. The first such paper is [10], which considers the issue of
accelerating the corpus generation process by parallelizing the main cycle of the method. This is possible
because each iteration of the loop (calculating the representation and occurrences of the next term) is
independent of each other, so they can be effectively executed in parallel. The only issue during parallelization
is the synchronization of the recording of terms to texts, depending on the method of solving which, the naive
parallel and parallel CorDeGen methods are proposed in [10].

The second is [9], which mentions the issue of memory allocation optimization for texts of the
generated corpus. This paper shows that a direct practical implementation of the basic CorDeGen method
requires constant manual or automatic memory allocation for texts as they are generated, which also slows
down generation. Instead, [9] proposes pre-allocating memory for each text “with excess”, the amount of which
is calculated using a fast heuristic formula (1) for the length of the text:

N Ngocs>
e o

However, the heuristic formula (1), although fast to calculate, has its drawbacks. Firstly, as the name
of this formula implies, it is derived heuristically and there is no formal proof that the amount of memory
calculated using it will be sufficient for any corpus size. This means that when using it, checks for the
sufficiency of allocated memory are still required during generation.

Secondly, this formula gives the same length estimate for all texts in the corpus, although in practice,
in most cases, the lengths of the texts differ. For example, if Nyg;ps 1s increased by 1 (but the value of Ny,
which depends on it, remains the same), the length of all texts according to this formula will increase by the
same amount, although the new term will be recorded only in a certain subset of these texts. In addition, the
power dependence of the text length according to formula (1) looks like it will cause a large overestimation of
the text length for large Niopms-

These shortcomings of the proposed stage of preliminary estimation of text length for memory
allocation can be eliminated by replacing formula (1) with another one that will exactly estimate the length of
each text from the generated corpus.

30 Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

TexHiuHI HayKu ISSN 2307-5732

Formulation of the goals of the article
The aim of this paper is to improve the efficiency of software implementations of the basic CorDeGen
method according to the criterion of memory usage by adding to the generation process a preliminary stage of
accurate estimation of the length of each text when allocating memory for them.

To achieve this goal, the following tasks were set and solved during this study:

e Derivation of the formula for the exact length of the text by its index for a certain value of Nygpms
when using the basic CorDeGen method.

e Adding the software implementation of preliminary estimation of text length during memory
allocation based on the obtained formula to existing software implementing the basic CorDeGen
method; verification of this implementation.

e Experimental evaluation of the effect of using an exact prior estimation of text length during
memory allocation, compared to using a fast heuristic formula.

Presentation of the main material
Text length formula

It is obvious that the length of the text with index d is obtained as the sum of the lengths of all
occurrences of terms that fall into this text, as well as the lengths of the separators between these occurrences.
If we consider the general case when the separator of occurrences of one term and the separator of different
terms do not coincide, then we obtain formula (2), where S; is the set of term indices that fall into the text d,
osl is the length of the separator of occurrences of one term, tsl is the length of the separator of different terms:
dly = Yies, count(i,d) x (length(i) + osl) — osl + tsl. 2)
Formula (2) assumes that the separator of different terms is always added after each term, that is, the
text ends with this separator. If a specific implementation of the basic CorDeGen method does not add the
separator after the last term (i.e., the text ends with the last occurrence of the last term, not the separator), then

formula (2) transforms into formula (3) in also an obvious way:
dly = —tsl + Yes, count(i,d) X (length(i) + osl) — osl + tsl. 3)

Also, formula (2) or formula (3) changes in an obvious way if the lengths osl and ts! coincide or

these separators are the same.

The basic CorDeGen method uses the index of the term i written in hexadecimal as its string

representation. Accordingly, the length of such a representation can be calculated by the formula:
length(i) = |logi¢(max(i,1))] + 1. “
Considering that many programming languages may lack a built-in function for calculating a
logarithm with an arbitrary base (in the case of formula (4) — with base 16), the formula (4) can be written
using a logarithm with an available base, for example, decimal:

. logi0(max(i,1))
length(l) = llloogTJ + 1.

The basic CorDeGen method uses the concept of a “central” text for a term with index i to determine
the indices of texts in which the term occurs, and the number of these occurrences. The term i is written to the
“central” text (c;) and texts lying in the interval from ¢; — 7 to ¢; + r (modulo Ny,.s), with ¢; and r being
calculated as

¢; =imod Ngyes, 7 = l%] + 1.
This means, that a term i is assigned to text d if and only if d is within +7 steps of ¢; on the circle
{0,1,..., Ngocs — 1}. In modular arithmetic, that condition is
(d —=c;)ymod Nyyes € {-1,...,7},
or, equivalently,
ci€{d—r,...,d+r}mod Nyys.
Accounting the definition of c;, this means
imod Ngyes € {d —71,...,d + r}mod Nys.

So, we can define S; from formulas (2) and (3) as:

Sa={i €{01,...,Neorms — 1}imod Nyopes €{d —7,...,d + r}mod Nyycs }- %)

In words, this means that text d is assigned all terms i whose remainder mod N, lies in the circular
interval from d — r to d + r. This set of “cligible” remainders can be defined as

Ry={d—r,...,d +r}mod Ngps.
If some x € Ry, then all integers i of the form
i =kNgpes + X,
for some integer k > 0 and also i < Nygpms, belong to S;. Hence, the formula (5) also can be rewritten as
Sqa = UxERd{kNdocs + x|k €Z,0 < kNgocs + X < Neerms}-

The number of term i occurrences in the text d also depends on whether that text is “central” to that

term or not. To calculate this, the total number of occurrences is calculated as
Ndocs (i mod Ndocs + 1)'

and then this total number is evenly distributed between all 2r + 1 texts, with the one exclusion — the

“central” text receives the doubled count of term occurrences. This rule can be defined as

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 31

Technical sciences ISSN 2307-5732

count(i, d) — NgocsX(imod Ndocs+12)r><£§—sgn|d—imod Ndacs|)_

Reference implementation and its verification

The reference implementation of the CorDeGen method family (including the basic one and its
parallel modifications) was developed by its authors with the .NET platform [11] and C# programming
language [12]. Accordingly, this platform and programming language were used in this study to add the length
estimation step to the reference implementation.

The .NET platform and its runtime (CoreCLR) use an automatic garbage collector instead of manual
memory management [13]. In this case, all “live” objects are divided into several generations (in the standard
implementation of the runtime — three), and garbage collections occur independently between generations [13].

The reference implementation uses the StringBuilder class to generate texts, which is designed in the
NET platform for memory-efficient string manipulation (because strings themselves are immutable). This
class is actually an implementation of a linked list over an array of characters (buffer), to which strings are
added during text generation [14]. When the buffer capacity of the current node (StringBuilder instance) is
exhausted, a new node is created with sufficient capacity for the value that needs to be written, and characters
continue to be written to the buffer of this instance [14]. When a StringBuilder instance is created, it receives
an initial buffer capacity, which is actually the received estimate of the text length. An abstraction of text length
estimation was added to the reference implementation with three different instances:

e A constant implementation that always returns a value of 16 characters — this value corresponds
to the default StringBuilder buffer capacity; this implementation is not intended for practical use
and will only be used within the framework of this study as a baseline to compare the other two
implementations.

e Implementation of fast heuristic estimation.

e Implementation of the exact estimation formula obtained in this paper.

To verify the correctness of the last implementation, a property-based testing approach was used
instead of human oracle-based example tests. In the case of exact text length estimation, the only and obvious
property is that the estimated value must be equal to the length of the received text for each text from the
generated corpus for any value of Ny, The integration tests added to the reference implementation include
this property for the basic, naive parallel, and parallel implementations of the CorDeGen method, using the
xUnit [15] and FsCheck [16] libraries, with the following settings: Nigpms from 1296 to 25000, the number of
property tests per run is 200. The selected range of Nigpms values is the compromise between maximum
property coverage and its execution speed.

Experiments: divergence of heuristic estimation

During this study, the divergence between the values obtained by the fast heuristic formula and the
exact formula obtained in this paper was experimentally measured.

The measurement was performed for all N;g,.,s Values in the range from 1296 to 62500 for each text
from the generated corpus. The maximum divergence between the calculated values of text lengths for each
value of Nieprms 1S shown in Fig. 1.

1E+06

1E+05),r—-—-}____ﬁ J/__,’—'7

1E+03 [e

1E+04

1E+02

Max per text divergence

1E+01

1E+00

— e
L0 O NS OO0 ONS OO NST OO NST OO NT OO N OO N WO N O O N
O M~ LVUWMSTMON OO0 OO MOANN-SOEONOVWVMS SSMAN- O OO~ W WL
N OO T ON OO ONOOMMMHWOLOMMMNEWOMOMOMMS OSOOONWOSSOONWO S 0w M o
S AN N OO0 NMU OO NMST O~ NN A M O~ M NS00 A NS 0N WOWO0 O
™o e e Al S NN NN ANNNMMMM N MMM S S S ST ST ST ST NN N WL NN N W
Nrerm5
Heuristic < exact —Heuristic > exact

Fig. 1. Max divergence between heuristic and proposed exact estimation

As can be seen from Fig. 1, at all N;pp,s values from 1296 to 2400 (corresponding to six texts in the
generated corpus), the values obtained by the fast heuristic formula are smaller than the exact values. In
practice, this means that the initially allocated memory for the generated texts will not be enough, so additional
memory will need to be allocated during the generation process.

As predicted by the main hypothesis of this study, starting with seven texts in the generated corpus
(i.e. Ngrms > 2400), the predictions of the fast heuristic formula begin to exceed the exact values, reaching 10°
for a single text at large values of N;;,,s. This leads to the allocation of extra memory for each text, which will
not be used, but only, for example, create unnecessary pressure on the garbage collector if it is present.

32 Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

TexHiuHI HayKu

Experiments: benchmarking

In order to study the effect of usage of the formula of exact length estimation on the practical metrics
(CPU, memory allocations, GC) of the reference basic CorDeGen implementation, benchmarking was
performed within the framework of this study.

The BenchmarkDotNet library [17], which is a de-facto standard on the .NET platform and suggested
by its developers, was used to write and run benchmarks of three developed instances of length estimation
approaches, including the exact formula proposed in this paper. This library greatly simplifies the
benchmarking process by automatically selecting the required number of methods call repetitions,
automatically performing warm-up and jitting [18]. Also, this library automatically performs statistical
processing of the obtained results, including the possibility of setting up a baseline [18]. As it was already
mentioned above, the default StringBuilder capacity (16) is used as the baseline in this study.

The four Nie,ms values are used in the benchmarking process: 2500, 12500, 62500, 312500. These
values correspond to the values used in other studies on the CorDeGen method topic but exclude the smallest
ones (100, 500) that can be not representative.

The benchmarking was performed on a physical machine (laptop) with the following hardware: CPU
with 6 physical/12 logical cores, 2.60 GHz; 16 Gb RAM, 2667 MHz. The results are shown in Table 1 and Table 2.

Table 1
Benchmarking: execution time (ms) and its ratio to the baseline
Length estimation | Mean | Median | Mean Ratio | Median Ratio
2500 unique terms
Default capacity 1.059 1.060 - -
Fast heuristic 1.074 1.087 1.014 1.025
Exact 1.257 1.261 1.187 1.190
12500 unique terms
Default capacity 14.919 14.849 - -
Fast heuristic 11.857 11.861 0.795 0.799
Exact 12.870 12.907 0.867 0.870
62500 unique terms
Default capacity 134.632 135.754 — —
Fast heuristic 97.305 97.970 0.723 0.722
Exact 105.983 106.005 0.787 0.781
312500 unique terms
Default capacity 1462.355 1431.525 — —
Fast heuristic 916.263 917.954 0.627 0.641
Exact 1008.783 1006.816 0.690 0.703
Table 2

Benchmarking: garbage collections per 1000 operations for each generation, allocated memory (MB),
and its ratio to the baseline

ISSN 2307-5732

Length Allocated Allocated
estimgtion Gen 0 Gen 1 Gen 2 Memory Ratio
2500 unique terms
Default 390.6250 259.7656 85.9375 235 -
capacity
Fast heuristic 390.6250 216.7969 85.9375 238 1.013
Exact 347.6563 259.7656 173.8281 23 0.979
12500 unique terms
Default 3687.5000 1796.8750 890.6250 2335 -
capacity
Fast heuristic 2468.7500 1000.0000 500.0000 23.83 1.021
Exact 2453.1250 578.1250 578.1250 23.24 0.995
62500 unique terms
Default 31500.0000 12250.0000 2750.0000 245.11 -
capacity
Fast heuristic 18666.6667 1666.6667 833.3333 257.91 1.052
Exact 18600.0000 1400.0000 1400.0000 244.65 0.998
312500 unique terms
Default 356000.0000 | 124000.0000 9000.0000 3023.64 -
capacity
Fast heuristic | 199000.0000 11000.0000 5000.0000 3313.95 1.096
Exact 193000.0000 3000.0000 3000.0000 3019.23 0.999
Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 33

Technical sciences ISSN 2307-5732

As can be seen from Table 1 and Table 2, the implementation using the proposed exact length
estimation formula is slower than the implementation using the fast heuristic estimation — from 6 to 17 percent
of the “default” implementation, with the difference decreasing as Ny,,,,s increases. This is easily explained
by the greater complexity of the exact formula compared to the heuristic estimate due to the need to calculate
all valid term indices for the text. This introduces additional overhead into the implementation using this
formula, which slows down the generation process, but it is still faster than the “default” implementation.

However, as expected, due to this overhead, the amount of memory allocated when running the
implementation using the proposed exact length estimation formula is reduced up to 10 percent of the “default”
implementation on large Nig,ms in the comparison with the fast heuristic estimation. At the same time, this
implementation allocates less memory than even the “default” implementation (even if this difference is only
a few megabytes on large Nierms), due to the fact that only one StringBuilder node is created, instead of many
additional nodes created when the “default” implementation works. This also significantly reduces the number
of garbage collections across all generations.

Similar results were also obtained when benchmarking the naive parallel and parallel versions of the
basic CorDeGen method.

Conclusions

This study shows the feasibility of improving existing methods of generating text corpora intended
for use in solving software engineering tasks in the context of natural language processing information systems.
One of the points for such improvements is the practical metrics of implementations of such methods, in
particular, memory usage. The basic CorDeGen method was chosen as the subject of this study, the analysis
of which showed the possibility of optimizing memory usage by implementations of this method, due to the
insufficient study of this issue in the literature to date.

To exactly estimate the length of a text by its index depending on the input value Nigpps (and,
accordingly, the amount of memory needed to be allocated for this text), this study derived a formula that takes
into account: the set of terms included in this text (Sy); the lengths of these terms (length(i)); the number of
their occurrences (count(i, d)); the lengths of the separators between terms (osl and tsl).

The existing reference implementation of the basic CorDeGen method and its modifications was
modified in order to experimentally verify the effectiveness of using the proposed formula for exact text length
estimation. To do this, a new abstraction was introduced in the implementation, which is responsible for the
preliminary estimation of the length for allocating memory for each text, and several instances of this
abstraction were added: by default, using the existing fast heuristic formula, and using the proposed exact
formula. The implementation of the exact formula was further verified for correctness using property-based
tests.

Experimental verification using a modified reference implementation confirmed the achievement of
the main goal of this study — using the proposed exact estimation formula on large corpora allows reducing the
amount of memory allocated by 10% compared to the fast heuristic formula. This result is achieved by
increasing the generation time by 6% for the same corpus sizes. A small reduction in speed in exchange for
reduced memory consumption can be especially critical for systems with small or limited memory.

The results presented in this paper can be further developed in the form of adapting the obtained exact
estimation formula to other modifications of the CorDeGen method, for example, CorDeGent+ or
DBCorDeGen.

References

l. Recski G., Iklédi E., Lellmann B., “BRISE-plandok: a German legal corpus of building
regulations,” Language Resources and Evaluation, (2024). https://doi.org/10.1007/s10579-024-09747-7.

2. Arhar Holdt S., Kosem I, “Solar, the developmental corpus of Slovene,” Language Resources and
Evaluation, (2024). https://doi.org/10.1007/s10579-024-09758-4.

3. Vitorio D., Souza E., Martins L., “Building a relevance feedback corpus for legal information
retrieval in the real-case scenario of the Brazilian Chamber of Deputies,” Language Resources and Evaluation,
(2024). https://doi.org/10.1007/s10579-024-09767-3.

4. Rakotomalala F., Hajalalaina A. R., Ravonimanantsoa Ndaohialy M. V., “FLICs (Facebook
Language Informal Corpus): a novel dataset for informal language,” International Journal of Data Science and
Analytics, vol. 18, pp. 393-403, (2024). https://doi.org/10.1007/s41060-023-00460-2.

5. Lichtarge J., “Corpora generation for grammatical error correction,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, (2019). https://doi.org/10.18653/v1/N19-1333.

6. Nazura J., Muralidhara B. L., “Automating Corpora Generation with Semantic Cleaning and
Tagging of Tweets for Multi-dimensional Social Media Analytics,” International Journal of Computer
Applications, vol. 127, no. 12, pp. 11-16, (2015). https://doi.org/10.5120/ijca2015906548.

34 Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353)

https://doi.org/10.1007/s10579-024-09747-7
https://doi.org/10.1007/s10579-024-09758-4
https://doi.org/10.1007/s10579-024-09767-3
https://doi.org/10.1007/s41060-023-00460-2
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.5120/ijca2015906548

TexHiuHI HayKu ISSN 2307-5732

7. Alberti C., Andor D., Pitler E., Devlin J., Collins M., “Synthetic QA Corpora Generation with
Roundtrip Consistency,” in Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, (2019). https://doi.org/10.18653/v1/P19-1620.

8. Boujelbane R., Ellouze Khemekhem M., Belguith L., “Mapping Rules for Building a Tunisian
Dialect Lexicon and Generating Corpora,” in Proceedings of the Sixth International Joint Conference on
Natural Language Processing, (2013). https://aclanthology.org/[13-1048/

9. YusynY., “Methods and software tools for metamorphic testing of software systems for automatic
clustering of natural language text data,” PhD thesis, Kyiv, (2022) [in Ukrainian].

10. Yusyn Y., Zabolotnia T., “Accelerating the process of text data corpora generation by the
deterministic method,” Eastern-European Journal of Enterprise Technologies, vol. 1, no. 2 (127), pp. 26-34,
(2024). https://doi.org/10.15587/1729-4061.2024.298670.

11. Microsoft, “What's new in .NET 8,” (2023). [Online]. Available: https://learn.microsoft.com/en-
us/dotnet/core/whats-new/dotnet-8/overview.

12. Microsoft, “What's new in C# 12,” (2023). [Online]. Available: https://learn.microsoft.com/en-
us/dotnet/csharp/whats-new/csharp-12.

13. Kokosa K., “Pro .NET Memory Management: For Better Code, Performance, and Scalability (1st
Edition)”, Apress, (2018).

14.Lock A., “Series: A deep dive on StringBuilder,” (2021). [Online]. Available:
https://andrewlock.net/series/a-deep-dive-on-stringbuilder/.

15. NET Foundation and contributors, “Home > xUnit.net,” (2019). [Online]. Available:
https://xunit.net/.

16. Aichernig B., Schumi R., “Property-based Testing with FsCheck by Deriving Properties from
Business Rule Models,” in In 2016 IEEE Ninth International Conference on Software Testing, Verification,
and Validation Workshops (ICSTW), 13th Workshop on Advances in Model Based Testing (A-MOST 2016),
(2016).

17.NET Foundation and contributors, “Overview | BenchmarkDotNet,” (2018). [Online]. Available:
https://benchmarkdotnet.org/articles/overview.html.

18. Akinshin A., “Pro .NET Benchmarking: The Art of Performance Measurement”, Apress, (2019).

Herald of Khmelnytskyi national university, Issue 3, part 2, 2025 (353) 35

https://doi.org/10.18653/v1/P19-1620
https://aclanthology.org/I13-1048/
https://doi.org/10.15587/1729-4061.2024.298670
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-8/overview
https://learn.microsoft.com/en-us/dotnet/core/whats-new/dotnet-8/overview
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12
https://andrewlock.net/series/a-deep-dive-on-stringbuilder/
https://xunit.net/
https://benchmarkdotnet.org/articles/overview.html

	УДК 004.051:004.912
	Introduction
	Analysis of recent research
	Formulation of the goals of the article
	Presentation of the main material
	Text length formula
	Reference implementation and its verification
	Experiments: divergence of heuristic estimation
	Experiments: benchmarking

	Conclusions
	References

