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INVESTIGATION OF THE MAIN ASPECTS OF THE GENERATIVE
MODELS APPLICATIONS IN MACHINE LEARNING

This paper examines the fundamental characteristics and applications of generative deep learning models in machine
learning, with particular focus on their methodological frameworks and practical implementations. To identify and analyze
the implementation and application characteristics of generative models, we conduct a systematic examination of four main
types: autoregressive models, which have become foundational for large language models and sequential data processing;
variational autoencoders, which utilize latent space constraints and probabilistic encoding, generative adversarial networks,
which employ discriminator-based learning through competitive neural architectures; and diffusion models, which
implement a noise-reduction approach through iterative refinement. Each model type presents distinct methodological
solutions to the challenge of generating objects that approximate the probability distribution of a given dataset, offering
unique advantages and considerations for different application scenarios. This analysis contributes to the understanding of
how different generative architectures can be effectively utilized in various machine learning applications.

The research demonstrates the practical applications of these models across multiple domains, highlighting their
impact on contemporary machine learning tasks. In computer vision and multimedia, they have proven effective for image
synthesis, super-resolution enhancement, and video generation, contributing to significant advances in content creation and
modification. Their application extends to healthcare, where they facilitate the generation of synthetic patient data while
maintaining privacy requirements and adhering to ethical guidelines. The study highlights the particular utility of generative
models in data augmentation scenarios, especially in fields where data collection faces practical or ethical limitations, such
as medical imaging and specialized research domains. Special attention is given to the conditioning mechanism that enables
natural language interaction with the generation process, which has led to significant advances in text-to-image and text-to-
video applications.
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BOHJIAP BITAJIIA, BABEHKO BIPA

YepkachKuii IepyKaBHUH TEXHOJIOTIYHUIT yHIBEpCHTET

JOCJIIKEHHSI OCHOBHUX ACIHEKTIB 3ACTOCYBAHHS TEHEPATUBHUX MOJIEJIEN B
MAIIWMHHOMY HABYAHHI

YV Oamiti pobomi Oocnidocyromecs gynoamenmanvhi xapakmepucmuxu ma cnocoou 3acmocy8anHs eHepamueHux mooenet
2NUOOK020 HABYAHHS 8 MAUUHHOMY HAGYAHHI. 3 MemOI0 U3HAYEHHA Ma AHANi3y 0cobaUsOCmell peanizayii ma 3acMmocy8anHs 2eHepamueHUX
Modeeli npoananiz3o8ano Yomupu ix OCHOBHI MUnu. asmopezpeciiini Mooeii, AKi Cmaiu 0CHOB0I0 OJiA BEIUKUX MOBHUX MOOeell,; 8apiayitiHi
aA6MOoeHKoOeplU, o BUKOPUCTIOBYIOMb OOMENCEHHS IAMEHTNHO20 NPOCIOPY,; 2eHePaAMUBHI 3MaA2ATbHI MepedCi, AKI 3aCMOCO8YIONb HAGYAHHS
Ha OCHOBI QuCKpuMinamopa; ma ougysitni mooeni, wo peanizyromoy nioxio smenwenns wymy. Koocen mun mooeni npeocmasnae okpemi
MemoOon02iuHi  piienHs ONid 3a60aHHA 2eHepayii 00'ekmig, AKi HAOIUMNCAIOMb PO3NOOLN UMOGIPHOCHEN 3A0AH020 HAOOPY OAHUX.
IIposedenuii ananiz cnpuse po3yminHio moeco, AK Pi3Hi 2eHepamueHi apximekmypu MOJNCYmy Oymu epexmugHo GUKOPUCMAHT 6 Di3HuX
3aCMOCYHKAX MAUUHHO20 HABYAHHSL.

Hocnioscenns deMoHcmpye npakmuyne 3acmocy8aHHs yux mMooenetl y pisHux 2anyssx. Y komn'tomepHomy 30pi ma myrsmumeoia
60HU D0BeU C60I0 egheKmueHicmb 05 cunmesy 306pasicens, noKpawens po3ditbHoi 30amnocmi ma eenepayii sideo. Ix 3acmocysanms
NOWUPIOEMbCS. HA  MeOuuHy cgepy, Oe 6OHU CHPUAIOMb 2eHepayii CUHMEeMmuuyHUX OaHuX Nayienmie i3 OOMPUMAHHAM 6UMO2
Kongidenyitinocmi. Y 0ocuiodcenti nioKpecioemvcs 0coouea KOPUCHICIb 2eHEPAMUSHUX MOOeNell Y CYEHAPISIX POUUPEHHS OAHUX,
0C00IUBO 6 2ay3sX, 0e 30Ip OaHUX CIUKAEMbCA 3 NPAKMUYHUMU Yy emudHuMu oomedcennamu. Ocobausa ysaza npudiiacmvcs Mexanismy
YMOGHOT cenepayii, Axull 3abe3neqyc 63acMo0il0 3 NPOYecoM 2eHepayii NpUpoOHOI0 MOB0IO, WO NPU36EN0 00 3HAYHUX OOCACHEHb )
3ACMOCY8aHHI NEPeMBOPEHH s MEKCNLY 8 306paXCeHHs Ma 8i0eo.

Kniouosi cnosa: mawunne HaguanHs, 2enepamusti MoOei, Xapakmepucmuku, 3acmoCyHKu, CYyeHapii po3uupenHs OaHux.

Statement of the problem

The rapid advancement of deep learning has led to significant developments in generative models, which
have demonstrated the ability to create high-quality synthetic data across various domains, including images,
text, music, and other forms of data. While these models show promising results in generating content that closely
resembles real-world data, understanding their different approaches and practical applications remains a complex
challenge. The growing diversity of generative methodologies, from autoregressive models to diffusion-based
approaches, necessitates a systematic examination of their characteristics and capabilities.

This research focuses on analyzing the primary types of generative models and their applications in
machine learning tasks. Our investigation addresses the fundamental aspects of these models' architectures, their
distinct approaches to data generation, and their practical implementation across different domains. Special
attention is given to their role in data augmentation and synthesis, particularly in scenarios where practical or
ethical constraints limit data availability.
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The purpose of the research is to examine the primary types of generative models in machine learning,
analyze their distinct methodological approaches, and explore their practical applications across various
domains.

Main material

Generative deep learning models have gained unprecedented popularity in recent years due to their
successful application in generating high-quality images, text, music, as well as sensory data, electronic health
records, mobility trajectories, and financial time-series [1]. These models have revolutionized various fields by
providing innovative solutions for data generation and synthesis. The ability to create realistic and meaningful
content has opened new possibilities across multiple domains, from healthcare to creative industries. The
growing adoption of generative models has also sparked interest in their practical applications, particularly in
scenarios where data augmentation or synthetic data generation is crucial. Along with the successes of generative
models in practical applications, a new wave of interest has emerged from researchers, contributing to the
continuous appearance of new studies.

Most commonly, a generative model is defined as a model capable of producing new objects that closely
resemble those found in a given dataset. In mathematical terms, this process can be understood as approximating
the probability distribution of objects within the dataset. In contrast, discriminative models take a fundamentally
different approach - instead of working with distributions, they focus on predicting either the likelihood of
specific events for individual objects or calculating particular numerical characteristics of these objects [2].

The inherent complexity and ill-defined nature of generative tasks have given rise to numerous and
remarkably diverse solution approaches. Among the most widely adopted methodologies in machine learning,
we find autoregressive models, variational autoencoders, generative adversarial networks, and diffusion models.

Autoregressive models approach generation by treating the target object as an independent sequence of
elements. This fundamental assumption simplifies the task into a more manageable challenge: generating the
next element in a sequence based on the existing incomplete subsequence. This approach has proven particularly
natural for text generation, where it is commonly known as Language Modeling. Indeed, this methodology
became the cornerstone for large language models (LLMs), beginning with the original GPT [3] and continues
to be the underlying principle in contemporary models such as Llama [4], GPT-4 [5], Gemini [6] and others.

The variational autoencoder transforms a conventional autoencoder's decoder into a comprehensive
generative model by constraining the latent space to conform to a predefined distribution. The original
implementation, as presented by Kingma [7], achieved this by constraining the latent space to a unit normal
distribution through the ELBO of the log-likelihood. As the field evolved, researchers proposed various
alternative approaches to latent space constraint, with discretization-based methods gaining particular
prominence, as exemplified by VQ-VAE [8] and FCQ-VAE [9]. However, despite these advances, variational
autoencoders continue to face a persistent challenge: the tendency to produce somewhat "blurred" generated
objects.

Generative adversarial networks (GANs) replace the formally derived loss function with another neural
network, one specifically trained to distinguish between generated objects and actual dataset samples [10]. At
the heart of this approach lies the interplay between two networks - the Generator and the Discriminator - which
learn to achieve Nash equilibrium through their opposing objectives. While the Discriminator is trained to
differentiate between generated and real objects, the Generator is trained to create objects that the Discriminator
classifies them as real. In this dynamic relationship, the Discriminator effectively functions as an adaptive loss
function for the Generator.

Generative adversarial networks have demonstrated remarkable capabilities across diverse application
domains. In computer vision, they have achieved significant success in image-to-image translation, super-
resolution enhancement, and the generation of photorealistic images [11]. The medical field has embraced GANs
for synthesizing medical images, augmenting limited datasets, and generating synthetic patient data while
preserving privacy [12]. In multimedia applications, GANs have proven effective for tasks such as voice
conversion, music generation, and video synthesis. The fashion and design industries have utilized GANs for
creating new product designs and virtual try-on systems. Additionally, these networks have found applications
in anomaly detection, data augmentation for training other machine learning models.

Diffusion generative models frame the generation process as learning to reverse diffusion. In this
framework, the forward process entails the gradual addition of white noise to a given object, ultimately
transforming it into a point drawn from a normal distribution. The diffusion model itself learns to predict the
inverse transformation - the path from a noise-corrupted object back to its original form. Through an iterative
process of gradual denoising steps, the model can transform a point sampled from a normal distribution into an
object that follows the distribution of the training dataset. While these diffusion processes were traditionally
formulated using differential equations [13], recent developments have shown that the same process can be
described using simpler mathematical frameworks [14].

Diffusion models gained remarkable popularity following the publication of "Diffusion models beat gans
on image synthesis" [15]. These models have since found applications across numerous research areas. In
computer vision, researchers have successfully applied them to address fundamental challenges in super-
resolution, inpainting, and image restoration. The scope of diffusion models has expanded into video synthesis
and point cloud completion tasks. The field of multi-modal learning has also benefited from diffusion models,
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as evidenced by recent work in text-to-image generation, text-to-video synthesis, and text-to-3D object creation.
In the domain of interdisciplinary research, these models have been adapted for molecular graph modeling and
have shown practical utility in material design and medical image reconstruction. Their application extends to
temporal data analysis, where researchers have employed them for time series imputation, forecasting, and
waveform signal processing tasks [16].

In practical tasks where the solution is not uniquely defined (such as classification, regression, and similar
problems), generative models prove valuable due to their ability to sample results from a distribution. Various
types of generative models are widely employed in the generation of images, video, music, and other media
forms. Models that generate content based on textual descriptions or client queries have become particularly
prevalent. This conditioning mechanism enables natural interaction with the generation process through natural
language expressions. Additionally, generative models have demonstrated considerable utility in enhancement
tasks for text, images, video, and audio. Conditioning on lower-quality objects (downscaled, noisy, black-and-
white, etc.) provides a strong signal for generative models, and when combined with their capacity to produce
high-quality outputs, this becomes the foundation for numerous practical applications.

Another significant aspect of generative model applications lies in the augmentation of small datasets for
training specialized neural networks. When faced with limited data availability (for instance, medical images of
specific conditions), researchers employ generative models to create realistic synthetic data to supplement their
datasets. This approach has proven particularly valuable in domains where data collection is constrained by
practical or ethical considerations.

This research examines the application characteristics of four distinct deep learning generative models:
autoregressive models, variational autoencoders, generative adversarial networks, and diffusion models.
Through a systematic analysis of their fundamental properties and implementation methods, this study provides
insights into their practical applications across different fields. The findings from this investigation can assist
researchers in selecting appropriate generative models based on specific task requirements within the machine
learning framework. This analysis contributes to the understanding of how different generative architectures can
be effectively utilized in various machine learning applications.

Conclusions

Generative models have become an integral part of the machine learning landscape. We examined four
primary types of generative models: autoregressive models, variational autoencoders, generative adversarial
networks, and diffusion models, each offering distinct approaches to the fundamental challenge of generating
objects that resemble a given dataset. Autoregressive models have found particular success in text generation
and language modeling, serving as the foundation for contemporary large language models. While variational
autoencoders have made progress through various approaches to latent space constraint, they continue to face
challenges with output clarity. Generative adversarial networks have shown remarkable versatility, while
diffusion models have demonstrated promising results across multiple domains.

The practical applications of these models have shown significant impact across various fields. In
computer vision and multimedia, they excel at tasks such as image-to-image translation, super-resolution
enhancement, and video synthesis. The medical field has benefited from their ability to generate synthetic patient
data while preserving privacy. Their natural language conditioning mechanism has enabled intuitive interaction
with generation processes, leading to advances in text-to-image generation and text-to-video synthesis.
Particularly noteworthy is their role in data augmentation, where they address the challenge of limited data
availability by generating realistic synthetic data for training specialized neural networks. This capability has
proven especially valuable in domains where data collection is constrained by practical or ethical considerations,
such as medical imaging and specialized research fields.

References

1. Eigenschink, P., Reutterer, T., Vamosi, S., Vamosi, R., Sun, C., & Kalcher, K. (2023). Deep
generative models for synthetic data: A survey. IEEE Access, 11,47304-47320.

2. Harshvardhan, G. M., Gourisaria, M. K., Pandey, M., & Rautaray, S. S. (2020). A comprehensive
survey and analysis of generative models in machine learning. Computer Science Review, 38, Article 100285.

3. Radford, A. (2018). Improving language understanding by generative pre-training. arXiv preprint
arXiv:1810.04805.

4. Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Lample, G.
(2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

5. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, 1., Aleman, F. L., ... & McGrew, B. (2023).
GPT-4 technical report. arXiv preprint arXiv:2303.08774.

6. Anil, R., Borgeaud, S., Alayrac, J. B., Yu, J., Soricut, R., ... & Blanco, L. (2023). Gemini: A family
of highly capable multimodal models. arXiv preprint arXiv:2312.11805.

7. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114.

Herald of Khmelnytskyi national university, Issuel, 2025 (347) 71



Technical sciences ISSN 2307-5732

8. Vanden Oord, A., Vinyals, O., & Kavukcuoglu, K. (2017). Neural discrete representation learning.
Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017).

9. Mentzer, F., Blumer, T., Hoogeboom, E., & Menkovski, V. (2023). Finite scalar quantization: VQ-
VAE made simple. arXiv preprint arXiv:2309.15505.

10. Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y.
(2020). Generative adversarial networks. Communications of the ACM, 63(11), 139—-144.

11. Wang, Z., She, Q., & Ward, T. E. (2021). Generative adversarial networks in computer vision: A
survey and taxonomy. ACM Computing Surveys (CSUR), 54(2), 1-38.

12. Chen, Y., Yang, X. H., Wei, Z., Heidari, A. A., Zheng, N., Li, Z., ... & Guan, Q. (2022). Generative
adversarial networks in medical image augmentation: A review. Computers in Biology and Medicine, 144,
Article 105382.

13.Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33, 6840—6851.

14. Heitz, E., Belcour, L., & Chambon, T. (2023). Iterative a-(de)blending: A minimalist deterministic
diffusion model. ACM SIGGRAPH 2023 Conference Proceedings.

15. Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in
Neural Information Processing Systems, 34, 8780—8794.

16. Yang, L., Cheng, X., Zhang, Z., Wang, Y., Luo, H., & Wang, H. (2023). Diffusion models: A
comprehensive survey of methods and applications. ACM Computing Surveys, 56(4), 1-39.

72 Herald of Khmelnytskyi national university, Issuel, 2025 (347)



